Review of pixel-level remote sensing image fusion based on deep learning

深度学习 计算机科学 保险丝(电气) 人工智能 领域(数学) 图像融合 像素 生成语法 空间分析 图像(数学) 机器学习 计算机视觉 遥感 地质学 数学 纯数学 电气工程 工程类
作者
Zhaobin Wang,Yikun Ma,Yaonan Zhang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:90: 36-58 被引量:60
标识
DOI:10.1016/j.inffus.2022.09.008
摘要

The booming development of remote sensing images in many visual tasks has led to an increasing demand for obtaining images with more precise details. However, it is impractical to directly supply images that are simultaneously rich in spatial, spectral, and temporal information. One feasible solution is to fuse the information from multiple images. Since deep learning has achieved impressive achievements in image processing recently, this paper aims to provide a comprehensive review of deep learning-based methods for fusing remote sensing images at pixel-level. Specifically, we first introduce some traditional methods with their main limitations. Meanwhile, a brief presentation is made on four basic deep learning models commonly used in the field. On this basis, the research progress of these models in spatial information fusion and spatio-temporal fusion are reviewed. The current status on these models is further discussed with some coarse quantitative comparisons using several image quality metrics. After that, we find that deep learning models have not achieved overwhelming superiority over traditional methods but show great potential, especially the generative adversarial networks with its great capabilities in image generation and unsupervised learning should become a hot topic for future research. The joint use of different models should also be considered to fully extract multi-modal information. In addition, there is a lack of valuable research on pixel-level fusion of radar and optical images, requiring more attention in future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mumufan完成签到,获得积分10
1秒前
柠檬不萌完成签到,获得积分10
1秒前
chenhbin应助二十二点36采纳,获得20
3秒前
Orange应助cnas采纳,获得10
5秒前
MascaraEd发布了新的文献求助10
5秒前
英姑应助高贵灵槐采纳,获得10
6秒前
6秒前
future完成签到 ,获得积分10
7秒前
7秒前
7秒前
wildeager发布了新的文献求助10
8秒前
11秒前
12秒前
13秒前
Hus11221发布了新的文献求助10
13秒前
14秒前
zhuzhu发布了新的文献求助10
14秒前
15秒前
cnas完成签到,获得积分10
15秒前
彩虹雨发布了新的文献求助10
16秒前
16秒前
xiaoxiao发布了新的文献求助10
17秒前
yu发布了新的文献求助30
19秒前
cnas发布了新的文献求助10
19秒前
愉快盼曼发布了新的文献求助10
21秒前
25秒前
愉快盼曼完成签到,获得积分20
28秒前
30秒前
完美世界应助cnas采纳,获得10
31秒前
滥俗的人给滥俗的人的求助进行了留言
31秒前
yurong发布了新的文献求助10
31秒前
张张完成签到,获得积分10
32秒前
32秒前
小红帽完成签到,获得积分10
33秒前
33秒前
十三香完成签到 ,获得积分10
34秒前
hiaoyi完成签到 ,获得积分0
34秒前
000发布了新的文献求助10
35秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3945771
求助须知:如何正确求助?哪些是违规求助? 3490552
关于积分的说明 11057050
捐赠科研通 3221444
什么是DOI,文献DOI怎么找? 1780608
邀请新用户注册赠送积分活动 865675
科研通“疑难数据库(出版商)”最低求助积分说明 799972