Subnetwork-Lossless Robust Watermarking for Hostile Theft Attacks in Deep Transfer Learning Models

计算机科学 数字水印 水印 子网 稳健性(进化) 人工智能 学习迁移 深度学习 机器学习 无损压缩 嵌入 利用 计算机安全 数据压缩 图像(数学) 基因 生物化学 化学
作者
Ju Jia,Yueming Wu,Anran Li,Siqi Ma,Yang Liu
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:: 1-16 被引量:5
标识
DOI:10.1109/tdsc.2022.3194704
摘要

Recently, considerable progress has been made in providing solutions to prevent intellectual property (IP) theft for deep neural networks (DNNs) in ideal classification or recognition scenarios. However, little work has been dedicated to protecting the IP of DNN models in the context of transfer learning. Moreover, knowledge transfer is usually achieved through knowledge distillation or cross-domain distribution adaptation techniques, which will easily lead to the failure of the IP protection due to the high risk of the underlying DNN watermark being corrupted. To address this issue, we propose a subnetwork-lossless robust DNN watermarking (SRDW) framework, which can exploit out-of-distribution (OOD) guidance data augmentation to boost the robustness of watermarking. Specifically, we accurately seek the most rational modification structure (i.e., core subnetwork) using the module risk minimization, and then calculate the contrastive alignment error and the corresponding hash value as the reversible compensation information for the restoration of carrier network. Experimental results show that our scheme has superior robustness against various hostile attacks, such as fine-tuning, pruning, cross-domain matching, and overwriting. In the absence of malicious jamming attacks, the core subnetwork can be recovered without any loss. Besides that, we investigate how embedding watermarks in batch normalization (BN) layers affect the generalization performance of the deep transfer learning models, which reveals that reducing the embedding modifications in BN layers can further promote the robustness to resist hostile attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Strongly完成签到,获得积分10
1秒前
斯文败类应助root采纳,获得10
2秒前
2秒前
4秒前
5秒前
5秒前
科研通AI5应助bobo采纳,获得10
5秒前
漂亮幻莲发布了新的文献求助10
6秒前
刘肖完成签到,获得积分10
6秒前
Baneyhua发布了新的文献求助10
6秒前
7秒前
charolte发布了新的文献求助10
9秒前
欣棚镇发布了新的文献求助10
10秒前
11秒前
柔弱熊猫发布了新的文献求助10
11秒前
大模型应助我爱Chem采纳,获得10
12秒前
贝壳发布了新的文献求助30
15秒前
17秒前
搜集达人应助John采纳,获得10
18秒前
嘻嘻完成签到,获得积分20
18秒前
zzzzzzy发布了新的文献求助10
19秒前
肉肉的小屋完成签到,获得积分10
21秒前
Ava应助英勇的灯泡采纳,获得10
22秒前
22秒前
xzh完成签到 ,获得积分10
26秒前
28秒前
28秒前
28秒前
科目三应助包容的瑾瑜采纳,获得10
31秒前
arff完成签到,获得积分10
31秒前
小米儿丫丫完成签到,获得积分10
31秒前
Nelson发布了新的文献求助10
32秒前
33秒前
科研通AI5应助贝壳采纳,获得10
33秒前
33秒前
34秒前
boboking发布了新的文献求助10
34秒前
舒适乐儿完成签到 ,获得积分10
34秒前
123完成签到,获得积分10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800387
求助须知:如何正确求助?哪些是违规求助? 3345653
关于积分的说明 10326311
捐赠科研通 3062106
什么是DOI,文献DOI怎么找? 1680836
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763572