Fine-Grained Question-Level Deception Detection via Graph-Based Learning and Cross-Modal Fusion

计算机科学 欺骗 判断 情态动词 人工智能 图形 机器学习 任务(项目管理) 聚类分析 情报检索 理论计算机科学 社会心理学 经济 化学 管理 高分子化学 法学 政治学 心理学
作者
Huijun Zhang,Yang Ding,Lei Cao,Xin Wang,Ling Feng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:17: 2452-2467 被引量:7
标识
DOI:10.1109/tifs.2022.3186799
摘要

Automated deception detection has been found as a vital and concerned task, capable of assisting human users to assess truthfulness and detect deceptive behaviors in several situations (e.g., medical, legal, as well as occupational domains). As contact-free video cameras and data analysis techniques are leaping forward, leveraging one's visual, acoustic and textual information captured in a video can be cost-effective for deception detection. In this study, we aim at a fine-grained question-level deception detection task, focusing on detecting whether a subject lies or not in answering each question rather than providing an overall "lie or not" judgement. A Graph-based Cross-modal Fusion Model (GCFM) is presented to learn the inherent associations among the subject's reactions to different questions, plus a novel cross-modal attention mechanism to enhance the model's learning capability. As revealed by the experimental results on the two datasets, the proposed graph-based GCFM outperformed eight other methods, and its two alternatives (clustering K-means based and sequential learning LSTM based methods), achieving accuracy 88.14% and 86.91% on the two datasets, respectively. Besides, through association learning, GCFM could increase the accuracy by 1.87% and 4.33% on the two datasets, respectively. Furthermore, its cross-modal attention mechanism led to the improvement of accuracy by 2.44% and 2.95% on the two datasets, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuwang发布了新的文献求助10
刚刚
Eho发布了新的文献求助10
刚刚
Fung完成签到,获得积分10
1秒前
虞智闳发布了新的文献求助10
1秒前
2秒前
烟花应助lx123采纳,获得10
2秒前
2秒前
内向绿凝完成签到,获得积分10
2秒前
ST发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
深情安青应助鲤鱼平蓝采纳,获得10
5秒前
qqweisiweiqq完成签到,获得积分10
5秒前
灰光呀发布了新的文献求助10
6秒前
钻石完成签到,获得积分10
7秒前
脑洞疼应助冯F采纳,获得30
8秒前
8秒前
英俊的铭应助nanomolar采纳,获得10
8秒前
香蕉觅云应助LLM采纳,获得10
9秒前
j加油小豹子完成签到,获得积分10
11秒前
灰光呀完成签到,获得积分10
11秒前
Alky完成签到 ,获得积分10
11秒前
12秒前
ST完成签到,获得积分10
12秒前
14秒前
14秒前
15秒前
迷人秋翠发布了新的文献求助10
15秒前
16秒前
swetcol发布了新的文献求助10
16秒前
852应助小宋同学不能怂采纳,获得10
16秒前
黄同学完成签到,获得积分10
16秒前
2797924221发布了新的文献求助10
17秒前
17秒前
18秒前
张张发布了新的文献求助10
18秒前
18秒前
安1991应助酷狗小熊采纳,获得10
18秒前
黄同学发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515075
求助须知:如何正确求助?哪些是违规求助? 4608637
关于积分的说明 14512496
捐赠科研通 4544875
什么是DOI,文献DOI怎么找? 2490297
邀请新用户注册赠送积分活动 1472221
关于科研通互助平台的介绍 1443980