Making Waves: Intelligent phage cocktail design, a pathway to precise microbial control in water systems

水消毒 控制(管理) 水处理 生化工程 环境科学 环境工程 计算机科学 工程类 人工智能
作者
Bridget Hegarty
出处
期刊:Water Research [Elsevier BV]
卷期号:268: 122594-122594 被引量:3
标识
DOI:10.1016/j.watres.2024.122594
摘要

Current practices in water and wastewater treatment to control unwanted microbes have led to new problems, including health effects from disinfection byproducts, growth of opportunistic pathogens resistant to residual disinfectants (e.g., chlorine), and antibiotic resistance. These challenges are spurring interest in rethinking our practices of microbial control. Simultaneously, advances in molecular biology and computation power are driving renewed interest in using phages (viruses that infect bacteria) to precisely control microbial growth (aka, phage biocontrol). In this Making Waves article, I begin by reviewing the current state of research into phage cocktail design, emphasizing our limited understanding of the features of successful phage cocktails (combinations of multiple types of phages). I describe the state of modeling phage-bacteria interactions and underscore the need for increasing research efforts to predict phage cocktail success, a key gap slowing the application of phage biocontrol. I also detail how research must also focus on techniques for engineering more effective phages to offer a more rapid alternative to phage discovery from natural environments. In this way, phage cocktails comprised of phages with complementary infection strategies may be designed. The final area for increased research effort that I highlight is the need for phage cocktail design to account for possible unintended environmental effects, a risk that is increasingly acknowledged in phage ecology studies but mostly ignored by those developing phage biocontrol technologies. By focusing more research effort towards the areas necessary for intelligent phage cocktail design, we can accelerate the development of phage-based biocontrol in water systems and improve public health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
幸福大白发布了新的文献求助10
刚刚
奋斗的萝发布了新的文献求助10
刚刚
liu完成签到,获得积分20
1秒前
李健应助王雨晨采纳,获得10
4秒前
4秒前
4秒前
赘婿应助CYY采纳,获得10
4秒前
orixero应助研狗采纳,获得10
5秒前
彭于晏应助read采纳,获得10
6秒前
hujie完成签到,获得积分10
6秒前
6秒前
6秒前
8秒前
瞿选葵完成签到 ,获得积分10
8秒前
小趴菜发布了新的文献求助10
9秒前
香妃发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
烟花应助dadada采纳,获得10
11秒前
12秒前
12秒前
12秒前
12秒前
和光同尘完成签到,获得积分10
12秒前
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
learner1994发布了新的文献求助10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
14秒前
orixero应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中学生创造性思维能力自评测验的编制 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4248020
求助须知:如何正确求助?哪些是违规求助? 3781179
关于积分的说明 11871352
捐赠科研通 3434030
什么是DOI,文献DOI怎么找? 1884739
邀请新用户注册赠送积分活动 936342
科研通“疑难数据库(出版商)”最低求助积分说明 842268