Analysis of Wheat-Yield Prediction Using Machine Learning Models under Climate Change Scenarios

产量(工程) 气候变化 预测建模 农业工程 环境科学 机器学习 计算机科学 工程类 材料科学 地质学 海洋学 冶金
作者
Nida Iqbal,M. Umair Shahzad,El‐Sayed M. Sherif,Muhammad Usman Tariq,Javed Rashid,Tuan‐Vinh Le,Anwar Ghani
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:16 (16): 6976-6976 被引量:5
标识
DOI:10.3390/su16166976
摘要

Climate change has emerged as one of the most significant challenges in modern agriculture, with potential implications for global food security. The impact of changing climatic conditions on crop yield, particularly for staple crops like wheat, has raised concerns about future food production. By integrating historical climate data, GCM (CMIP3) projections, and wheat-yield records, our analysis aims to provide significant insights into how climate change may affect wheat output. This research uses advanced machine learning models to explore the intricate relationship between climate change and wheat-yield prediction. Machine learning models used include multiple linear regression (MLR), boosted tree, random forest, ensemble models, and several types of ANNs: ANN (multi-layer perceptron), ANN (probabilistic neural network), ANN (generalized feed-forward), and ANN (linear regression). The model was evaluated and validated against yield and weather data from three Punjab, Pakistan, regions (1991–2021). The calibrated yield response model used downscaled global climate model (GCM) outputs for the SRA2, B1, and A1B average collective CO2 emissions scenarios to anticipate yield changes through 2052. Results showed that maximum temperature (R = 0.116) was the primary climate factor affecting wheat yield in Punjab, preceding the Tmin (R = 0.114), while rainfall had a negligible impact (R = 0.000). The ensemble model (R = 0.988, nRMSE= 8.0%, MAE = 0.090) demonstrated outstanding yield performance, outperforming Random Forest Regression (R = 0.909, nRMSE = 18%, MAE = 0.182), ANN(MLP) (R = 0.902, MAE = 0.238, nRMSE = 17.0%), and boosting tree (R = 0.902, nRMSE = 20%, MAE = 0.198). ANN(PNN) performed inadequately. The ensemble model and RF showed better yield results with R2 = 0.953, 0.791. The expected yield is 5.5% lower than the greatest average yield reported at the site in 2052. The study predicts that site-specific wheat output will experience a significant loss due to climate change. This decrease, which is anticipated to be 5.5% lower than the highest yield ever recorded, points to a potential future loss in wheat output that might worsen food insecurity. Additionally, our findings highlighted that ensemble approaches leveraging multiple model strengths could offer more accurate and reliable predictions under varying climate scenarios. This suggests a significant potential for integrating machine learning in developing climate-resilient agricultural practices, paving the way for future sustainable food security solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DRYAN完成签到,获得积分10
刚刚
小陈同学完成签到,获得积分10
1秒前
sci666完成签到,获得积分10
1秒前
2秒前
szx发布了新的文献求助10
2秒前
孔大漂亮发布了新的文献求助20
2秒前
成就的幼南完成签到,获得积分10
3秒前
小溪完成签到,获得积分10
4秒前
4秒前
二三发布了新的文献求助10
4秒前
Atlantis发布了新的文献求助10
4秒前
爱睡觉的森森完成签到,获得积分10
5秒前
找不到文献的小江完成签到,获得积分10
7秒前
7秒前
sci666发布了新的文献求助10
7秒前
汉堡包应助aji采纳,获得10
8秒前
9秒前
聪明梦容发布了新的文献求助20
9秒前
科研通AI2S应助三十三天采纳,获得10
10秒前
水水发布了新的文献求助10
10秒前
11秒前
谈笑间应助zhong241采纳,获得10
11秒前
12秒前
英姑应助孔大漂亮采纳,获得10
13秒前
13秒前
我是老大应助huanhuan采纳,获得10
14秒前
bkagyin应助小田心采纳,获得10
14秒前
仁爱水之发布了新的文献求助10
16秒前
像个小蛤蟆完成签到 ,获得积分10
16秒前
AliHamid发布了新的文献求助10
16秒前
16秒前
Roxy关注了科研通微信公众号
17秒前
十月发布了新的文献求助20
18秒前
18秒前
19秒前
忧郁冰真发布了新的文献求助10
20秒前
懦弱的咖啡豆完成签到,获得积分10
20秒前
21秒前
yusheng发布了新的文献求助10
22秒前
22秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799740
求助须知:如何正确求助?哪些是违规求助? 3345074
关于积分的说明 10323372
捐赠科研通 3061599
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807075
科研通“疑难数据库(出版商)”最低求助积分说明 763462