已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploiting histopathological imaging for early detection of lung and colon cancer via ensemble deep learning model

人工智能 计算机科学 肺癌 结直肠癌 机器学习 深度学习 癌症 特征选择 超参数 模式识别(心理学) 医学 病理 内科学
作者
Moneerah Alotaibi,Amal Alshardan,Mashael Maashi,Mashael M. Asiri,Sultan Alotaibi,Ayman Yafoz,Raed Alsini,Alaa O. Khadidos
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1): 20434-20434 被引量:12
标识
DOI:10.1038/s41598-024-71302-9
摘要

Cancer seems to have a vast number of deaths due to its heterogeneity, aggressiveness, and significant propensity for metastasis. The predominant categories of cancer that may affect males and females and occur worldwide are colon and lung cancer. A precise and on-time analysis of this cancer can increase the survival rate and improve the appropriate treatment characteristics. An efficient and effective method for the speedy and accurate recognition of tumours in the colon and lung areas is provided as an alternative to cancer recognition methods. Earlier diagnosis of the disease on the front drastically reduces the chance of death. Machine learning (ML) and deep learning (DL) approaches can accelerate this cancer diagnosis, facilitating researcher workers to study a vast majority of patients in a limited period and at a low cost. This research presents Histopathological Imaging for the Early Detection of Lung and Colon Cancer via Ensemble DL (HIELCC-EDL) model. The HIELCC-EDL technique utilizes histopathological images to identify lung and colon cancer (LCC). To achieve this, the HIELCC-EDL technique uses the Wiener filtering (WF) method for noise elimination. In addition, the HIELCC-EDL model uses the channel attention Residual Network (CA-ResNet50) model for learning complex feature patterns. Moreover, the hyperparameter selection of the CA-ResNet50 model is performed using the tuna swarm optimization (TSO) technique. Finally, the detection of LCC is achieved by using the ensemble of three classifiers such as extreme learning machine (ELM), competitive neural networks (CNNs), and long short-term memory (LSTM). To illustrate the promising performance of the HIELCC-EDL model, a complete set of experimentations was performed on a benchmark dataset. The experimental validation of the HIELCC-EDL model portrayed a superior accuracy value of 99.60% over recent approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天开眼完成签到 ,获得积分10
2秒前
FashionBoy应助JenniferYu采纳,获得10
2秒前
Yiyong完成签到,获得积分10
4秒前
浮游应助YMW采纳,获得10
8秒前
13秒前
大爱人生完成签到 ,获得积分10
15秒前
16秒前
sarah完成签到,获得积分10
17秒前
18秒前
zanzi完成签到,获得积分10
18秒前
宏、发布了新的文献求助10
21秒前
脑洞疼应助红糖发糕采纳,获得10
21秒前
22秒前
haha发布了新的文献求助10
23秒前
小蘑菇应助mars采纳,获得10
23秒前
Henvy完成签到,获得积分10
24秒前
斯文败类应助科研通管家采纳,获得30
27秒前
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
大龙哥886应助科研通管家采纳,获得10
27秒前
JamesPei应助科研通管家采纳,获得10
28秒前
wanci应助科研通管家采纳,获得10
28秒前
李健应助科研通管家采纳,获得10
28秒前
Lucas应助科研通管家采纳,获得10
28秒前
大龙哥886应助科研通管家采纳,获得10
28秒前
Ava应助科研通管家采纳,获得10
28秒前
赘婿应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得50
28秒前
隐形曼青应助科研通管家采纳,获得10
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
王丹靖完成签到 ,获得积分10
29秒前
yang完成签到,获得积分20
31秒前
33秒前
罗莹完成签到 ,获得积分10
33秒前
35秒前
!hau发布了新的文献求助10
40秒前
CipherSage应助zozo采纳,获得10
44秒前
45秒前
碧蓝柠檬完成签到,获得积分10
46秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561002
求助须知:如何正确求助?哪些是违规求助? 4646217
关于积分的说明 14677923
捐赠科研通 4587422
什么是DOI,文献DOI怎么找? 2517028
邀请新用户注册赠送积分活动 1490394
关于科研通互助平台的介绍 1461197