劈形算符
有界函数
欧米茄
组合数学
物理
规范(哲学)
数学
数学分析
量子力学
法学
政治学
作者
Anjali Jaiswal,Poonam Rani,Jagmohan Tyagi
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2023-01-01
卷期号:28 (7): 4144-4166
被引量:7
标识
DOI:10.3934/dcdsb.2023002
摘要
We consider the following Keller-Segel system with gradient dependent chemotactic coefficient: \begin{document}$ \begin{equation*} \begin{cases} u_{t} = \Delta u- \chi \nabla\cdot (uf(|\nabla v|)\nabla v),\\ 0 = \Delta v -v+g(u), \end{cases} \end{equation*} $\end{document} in smooth bounded domains $ \Omega \subset \mathbb{R}^{n}, \,n\geq 1 $ with $ f(\xi) = \big(\xi^{p-2}\big(1+\xi^{p}\big)^{\frac{q-p}{p}}\big), \,1
科研通智能强力驱动
Strongly Powered by AbleSci AI