Double-Atom Catalysts Featuring Inverse Sandwich Structure for CO2 Reduction Reaction: A Synergetic First-Principles and Machine Learning Investigation

异核分子 同核分子 电负性 密度泛函理论 催化作用 化学 Atom(片上系统) 金属 计算化学 分子 物理化学 有机化学 计算机科学 嵌入式系统
作者
Linke Yu,Fengyu Li,Jingsong Huang,Bobby G. Sumpter,William E. Mustain,Zhongfang Chen
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:13 (14): 9616-9628 被引量:60
标识
DOI:10.1021/acscatal.3c01584
摘要

Electrocatalytic CO2 reduction reactions (CO2RR) based on scalable and highly efficient catalysis provide an attractive strategy for reducing CO2 emissions. In this work, we combined first-principles density functional theory (DFT) and machine learning (ML) to comprehensively explore the potential of double-atom catalysts (DACs) featuring an inverse sandwich structure anchored on defective graphene (gra) to catalyze CO2RR to generate C1 products. We started with five homonuclear M2⊥gra (M = Co, Ni, Rh, Ir, and Pt), followed by 127 heteronuclear MM′⊥gra (M = Co, Ni, Rh, Ir, and Pt, M′ = Sc–Au). Stable DACs were screened by evaluating their binding energy, formation energy, and dissolution potential of metal atoms, as well as conducting first-principles molecular dynamics simulations with and without solvent water molecules. Based on DFT calculations, Rh2⊥gra DAC was found to outperform the other four homonuclear DACs and the Rh-based single- and double-atom catalysts of noninverse sandwich structures. Out of the 127 heteronuclear DACs, 14 were found to be stable and have good catalytic performance. An ML approach was adopted to correlate key factors with the activity and stability of the DACs, including the sum of radii of metal and ligand atoms (dM–M′, dM–C, and dM′–C), the sum and difference of electronegativity of two metal atoms (PM + PM′, PM – PM′), the sum and difference of first ionization energy of two metal atoms (IM + IM′, IM – IM′), the sum and difference of electron affinity of two metal atoms (AM + AM′, AM – AM′), and the number of d-electrons of the two metal atoms (Nd). The obtained ML models were further used to predict 154 potential electrocatalysts out of 784 possible DACs featuring the same inverse sandwich configuration. Overall, this work not only identified promising CO2RR DACs featuring the reported inverse sandwich structure but also provided insights into key atomic characteristics associated with high CO2RR activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
岁月轮回发布了新的文献求助10
2秒前
4秒前
月亮发布了新的文献求助10
5秒前
fgpa发布了新的文献求助10
6秒前
科研通AI5应助xuan采纳,获得10
6秒前
8秒前
小马甲应助岁月轮回采纳,获得10
9秒前
DAWN完成签到 ,获得积分10
11秒前
17秒前
余晖关注了科研通微信公众号
20秒前
酷波er应助小太阳采纳,获得10
21秒前
xuan发布了新的文献求助10
22秒前
22秒前
sandy发布了新的文献求助10
25秒前
27秒前
dg_fisher发布了新的文献求助10
28秒前
咕咕发布了新的文献求助10
31秒前
33秒前
Johnny完成签到,获得积分10
34秒前
邓佳鑫Alan应助kingcoming采纳,获得10
35秒前
35秒前
英勇羿完成签到,获得积分10
35秒前
自由河马发布了新的文献求助10
36秒前
尺子尺子和池子完成签到 ,获得积分10
39秒前
39秒前
40秒前
舒服的吗喽完成签到 ,获得积分10
40秒前
研究生发布了新的文献求助10
41秒前
44秒前
44秒前
非命发布了新的文献求助10
44秒前
李健应助dg_fisher采纳,获得10
45秒前
46秒前
李健应助自由河马采纳,获得10
46秒前
46秒前
熹微完成签到,获得积分10
46秒前
vooooo发布了新的文献求助10
47秒前
50秒前
Zac完成签到,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Technologies supporting mass customization of apparel: A pilot project 300
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780651
求助须知:如何正确求助?哪些是违规求助? 3326187
关于积分的说明 10226004
捐赠科研通 3041286
什么是DOI,文献DOI怎么找? 1669261
邀请新用户注册赠送积分活动 799040
科研通“疑难数据库(出版商)”最低求助积分说明 758691