Double-Atom Catalysts Featuring Inverse Sandwich Structure for CO2 Reduction Reaction: A Synergetic First-Principles and Machine Learning Investigation

异核分子 同核分子 电负性 密度泛函理论 催化作用 化学 Atom(片上系统) 金属 计算化学 分子 物理化学 有机化学 计算机科学 嵌入式系统
作者
Linke Yu,Fengyu Li,Jingsong Huang,Bobby G. Sumpter,William E. Mustain,Zhongfang Chen
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:13 (14): 9616-9628 被引量:72
标识
DOI:10.1021/acscatal.3c01584
摘要

Electrocatalytic CO2 reduction reactions (CO2RR) based on scalable and highly efficient catalysis provide an attractive strategy for reducing CO2 emissions. In this work, we combined first-principles density functional theory (DFT) and machine learning (ML) to comprehensively explore the potential of double-atom catalysts (DACs) featuring an inverse sandwich structure anchored on defective graphene (gra) to catalyze CO2RR to generate C1 products. We started with five homonuclear M2⊥gra (M = Co, Ni, Rh, Ir, and Pt), followed by 127 heteronuclear MM′⊥gra (M = Co, Ni, Rh, Ir, and Pt, M′ = Sc–Au). Stable DACs were screened by evaluating their binding energy, formation energy, and dissolution potential of metal atoms, as well as conducting first-principles molecular dynamics simulations with and without solvent water molecules. Based on DFT calculations, Rh2⊥gra DAC was found to outperform the other four homonuclear DACs and the Rh-based single- and double-atom catalysts of noninverse sandwich structures. Out of the 127 heteronuclear DACs, 14 were found to be stable and have good catalytic performance. An ML approach was adopted to correlate key factors with the activity and stability of the DACs, including the sum of radii of metal and ligand atoms (dM–M′, dM–C, and dM′–C), the sum and difference of electronegativity of two metal atoms (PM + PM′, PM – PM′), the sum and difference of first ionization energy of two metal atoms (IM + IM′, IM – IM′), the sum and difference of electron affinity of two metal atoms (AM + AM′, AM – AM′), and the number of d-electrons of the two metal atoms (Nd). The obtained ML models were further used to predict 154 potential electrocatalysts out of 784 possible DACs featuring the same inverse sandwich configuration. Overall, this work not only identified promising CO2RR DACs featuring the reported inverse sandwich structure but also provided insights into key atomic characteristics associated with high CO2RR activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wxxxxx完成签到 ,获得积分10
刚刚
1秒前
1秒前
NexusExplorer应助学术laji采纳,获得10
1秒前
2秒前
WYang完成签到,获得积分10
2秒前
慧慧吴完成签到,获得积分20
2秒前
于鹏完成签到,获得积分10
3秒前
4秒前
研友_85rMpL发布了新的文献求助30
4秒前
ChenhaoTong发布了新的文献求助10
6秒前
王泰一发布了新的文献求助20
6秒前
6秒前
6秒前
7秒前
卓垚完成签到,获得积分10
7秒前
美术监完成签到 ,获得积分10
8秒前
慕青应助爱大美采纳,获得10
8秒前
10发布了新的文献求助10
8秒前
赵筱发布了新的文献求助10
9秒前
快乐非笑完成签到,获得积分10
10秒前
10秒前
小鱼儿完成签到,获得积分10
11秒前
ekdjk发布了新的文献求助10
11秒前
3dyf发布了新的文献求助10
11秒前
Yh_L完成签到,获得积分10
12秒前
大个应助ZZY采纳,获得10
12秒前
wangqinlei完成签到 ,获得积分10
12秒前
15秒前
牛肉面发布了新的文献求助10
15秒前
kingwill举报诗雯_乞依安求助涉嫌违规
16秒前
Yh_L发布了新的文献求助10
16秒前
忧郁凌波完成签到,获得积分10
17秒前
程程完成签到,获得积分10
17秒前
COSMAO应助虫虫采纳,获得20
17秒前
18秒前
科研通AI2S应助端庄醉山采纳,获得10
18秒前
热心市民小红花应助Louying采纳,获得10
19秒前
阔达幼珊发布了新的文献求助10
20秒前
21秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4114403
求助须知:如何正确求助?哪些是违规求助? 3652910
关于积分的说明 11567225
捐赠科研通 3356873
什么是DOI,文献DOI怎么找? 1843844
邀请新用户注册赠送积分活动 909763
科研通“疑难数据库(出版商)”最低求助积分说明 826496