Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph

概括性 计算机科学 图形 可追溯性 人工智能 理论计算机科学 软件工程 管理 经济
作者
Jiashuo Sun,Chengjin Xu,Lumingyuan Tang,Saizhuo Wang,Lin Chen,Yeyun Gong,Heung‐Yeung Shum,Jian Guo
出处
期刊:Cornell University - arXiv 被引量:49
标识
DOI:10.48550/arxiv.2307.07697
摘要

Although large language models (LLMs) have achieved significant success in various tasks, they often struggle with hallucination problems, especially in scenarios requiring deep and responsible reasoning. These issues could be partially addressed by introducing external knowledge graphs (KG) in LLM reasoning. In this paper, we propose a new LLM-KG integrating paradigm ``$\hbox{LLM}\otimes\hbox{KG}$'' which treats the LLM as an agent to interactively explore related entities and relations on KGs and perform reasoning based on the retrieved knowledge. We further implement this paradigm by introducing a new approach called Think-on-Graph (ToG), in which the LLM agent iteratively executes beam search on KG, discovers the most promising reasoning paths, and returns the most likely reasoning results. We use a number of well-designed experiments to examine and illustrate the following advantages of ToG: 1) compared with LLMs, ToG has better deep reasoning power; 2) ToG has the ability of knowledge traceability and knowledge correctability by leveraging LLMs reasoning and expert feedback; 3) ToG provides a flexible plug-and-play framework for different LLMs, KGs and prompting strategies without any additional training cost; 4) the performance of ToG with small LLM models could exceed large LLM such as GPT-4 in certain scenarios and this reduces the cost of LLM deployment and application. As a training-free method with lower computational cost and better generality, ToG achieves overall SOTA in 6 out of 9 datasets where most previous SOTAs rely on additional training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
岁岁发布了新的文献求助10
刚刚
1秒前
康康乃馨完成签到 ,获得积分10
1秒前
2秒前
3秒前
3秒前
3秒前
一只小郭完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
小杨发布了新的文献求助10
6秒前
7秒前
易安发布了新的文献求助10
7秒前
wanci应助lvzhihao采纳,获得10
7秒前
8秒前
8秒前
卷发麦麦发布了新的文献求助10
8秒前
8秒前
食肉动物发布了新的文献求助10
9秒前
一只小郭发布了新的文献求助10
9秒前
123发布了新的文献求助10
9秒前
张桐赫发布了新的文献求助100
10秒前
西瓜论文发布了新的文献求助10
10秒前
云程发轫完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
高浩洋大帅哥完成签到,获得积分20
10秒前
11秒前
毛耳朵完成签到,获得积分10
11秒前
12秒前
12秒前
anyeya发布了新的文献求助10
13秒前
11完成签到,获得积分20
13秒前
皮皮完成签到 ,获得积分10
13秒前
14秒前
14秒前
TPS发布了新的文献求助30
14秒前
Ava应助丸子采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492703
求助须知:如何正确求助?哪些是违规求助? 4590700
关于积分的说明 14431835
捐赠科研通 4523205
什么是DOI,文献DOI怎么找? 2478231
邀请新用户注册赠送积分活动 1463254
关于科研通互助平台的介绍 1436012