EST-NAS: An evolutionary strategy with gradient descent for neural architecture search

计算机科学 初始化 梯度下降 建筑 人工神经网络 进化算法 人工智能 网络体系结构 搜索成本 机器学习 艺术 计算机安全 微观经济学 经济 视觉艺术 程序设计语言
作者
Zicheng Cai,Lei Chen,Shaoda Zeng,Yutao Lai,Hai-Lin Liu
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:146: 110624-110624 被引量:4
标识
DOI:10.1016/j.asoc.2023.110624
摘要

Using weight-sharing and continuous relaxation strategies, the gradient descent-based differential architecture search has achieved great success in automatically designing neural network architectures. However, unresolved issues, i.e., the local optimum dilemma of the gradient descent method, and the network performance collapse of the searched architecture with too many unreasonable operations, are still frustrating for researchers and practitioners. To address these two issues, a novel and efficient neural architecture search approach based on a hybrid evolutionary strategy, termed EST-NAS, is proposed in this paper. In particular, we propose using a new evolutionary strategy to explore various search directions based on the gradient descent-based neural network architecture search, aiming at obtaining a more excellent architecture. In the proposed EST-NAS, the gradient descent architecture search is performed first, and then the best architecture obtained is utilized to design an efficient initialization for the following evolutionary strategy-based architecture search. By hybridizing evolutionary strategy with gradient descent-based search, EST-NAS can improve the performance of the searched architecture with better search efficiency. Meanwhile, the validation accuracy is applied to directly measure the importance of operations, which reduces the error in the relationship between operation and task performance. Extensive experimental results in the various datasets on different search spaces show that the proposed EST-NAS achieves remarkably competitive performance with less search cost, compared to other state-of-the-art NAS approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲁路修发布了新的文献求助10
刚刚
wodke完成签到,获得积分10
1秒前
FashionBoy应助乙二胺四乙酸采纳,获得10
2秒前
3秒前
科研通AI5应助Wd采纳,获得10
4秒前
Revovler发布了新的文献求助10
4秒前
hd完成签到,获得积分10
4秒前
可可发布了新的文献求助10
5秒前
多情dingding完成签到,获得积分10
7秒前
善学以致用应助闪闪雅阳采纳,获得10
7秒前
8秒前
领导范儿应助zzzzzzzz采纳,获得20
10秒前
小鲤鱼发布了新的文献求助10
13秒前
CA发布了新的文献求助10
16秒前
秀丽的皮皮虾完成签到 ,获得积分10
17秒前
18秒前
简丹完成签到,获得积分10
19秒前
fragile完成签到,获得积分10
24秒前
TP应助greatsnow采纳,获得10
25秒前
SciGPT应助鲁路修采纳,获得10
25秒前
哼哼完成签到,获得积分10
25秒前
李健应助简丹采纳,获得10
25秒前
27秒前
丹丹完成签到,获得积分10
29秒前
32秒前
32秒前
活泼半凡完成签到 ,获得积分10
33秒前
33秒前
我是老大应助LYJ采纳,获得10
34秒前
35秒前
丹丹发布了新的文献求助10
35秒前
36秒前
笑点低的映安完成签到,获得积分10
37秒前
37秒前
闪闪雅阳发布了新的文献求助10
38秒前
39秒前
39秒前
qiulong发布了新的文献求助10
40秒前
40秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776819
求助须知:如何正确求助?哪些是违规求助? 3322237
关于积分的说明 10209450
捐赠科研通 3037558
什么是DOI,文献DOI怎么找? 1666761
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976