Three-Dimensional Reconstruction and Damage Localization of Bridge Undersides Based on Close-Range Photography Using UAV

桥(图论) 摄影 航程(航空) 计算机科学 计算机图形学(图像) 物理 地质学 材料科学 艺术 视觉艺术 复合材料 医学 内科学
作者
Shang Jiang,Yufeng Zhang,F. Wang,Yichao Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 015423-015423 被引量:1
标识
DOI:10.1088/1361-6501/ad90fb
摘要

Abstract Damage inspection on the undersides of bridges is an important and challenging part of routine bridge inspections. A method for 3D reconstruction and damage localization of bridge undersides based on close-range photography by unmanned aerial vehicle (UAV) and stereo vision combined with deep learning algorithms is proposed, the specific contributions include: (1) proposing a close-range photography method for acquiring high-resolution images from multiple perspectives of the bridge underside by UAVs, serving as the data source for damage analysis; (2) applying a deep learning-assisted segmentation method to optimize the multi-view geometry-based 3D reconstruction method, improving the efficiency of three-dimensional reconstruction, and defining the projection direction from the 3D reconstruction results to obtain ultra-high-resolution panoramic images of the bridge underside; (3) addressing the issue of detecting minor damages in large panoramic images by using a slice-assisted reasoning module and a lightweight convolutional YOLO v8 network to identify exposed steel bars corroded due to concrete damage in the panoramic images, and defining a coordinate system to localize the damages on the bridge underside. The proposed method was applied to damage detection and localization on the underside of a 160 m span main span of an in-service concrete bridge. The results demonstrate that the proposed method can quickly and accurately identify exposed steel bar corrosion on the bridge underside and output reports, proving the practicality of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐意李完成签到,获得积分10
刚刚
boxi完成签到,获得积分10
刚刚
tony完成签到,获得积分10
1秒前
1秒前
做个梦给你完成签到,获得积分10
1秒前
hatim完成签到,获得积分10
1秒前
和谐尔阳完成签到 ,获得积分10
1秒前
YZ完成签到,获得积分10
2秒前
OSASACB完成签到 ,获得积分10
2秒前
2秒前
深情安青应助slowslow采纳,获得20
3秒前
五五我发布了新的文献求助10
3秒前
海啸完成签到 ,获得积分10
4秒前
利奈唑胺完成签到,获得积分10
4秒前
lqllll发布了新的文献求助10
4秒前
青青完成签到,获得积分10
4秒前
XZY关闭了XZY文献求助
4秒前
DXM完成签到 ,获得积分10
5秒前
Ethan完成签到 ,获得积分0
5秒前
weizheng完成签到,获得积分10
5秒前
微暖完成签到,获得积分0
5秒前
思源应助钱砖家采纳,获得10
5秒前
包容的若风完成签到,获得积分10
6秒前
6秒前
Who1990完成签到,获得积分10
7秒前
伶俐书蝶完成签到 ,获得积分10
7秒前
tengyve发布了新的文献求助10
7秒前
赘婿应助东方诩采纳,获得10
8秒前
执着柏柳完成签到,获得积分10
8秒前
老张完成签到,获得积分10
8秒前
尊敬的麦片完成签到,获得积分10
8秒前
科研小天才完成签到,获得积分10
9秒前
ZONG完成签到,获得积分10
10秒前
PPSlu完成签到,获得积分10
11秒前
在九月完成签到 ,获得积分10
11秒前
研友_n0kjPL完成签到,获得积分0
11秒前
开朗的绮山完成签到,获得积分10
11秒前
科研不是科幻完成签到,获得积分10
12秒前
12秒前
冯冯发布了新的文献求助10
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808162
求助须知:如何正确求助?哪些是违规求助? 3352864
关于积分的说明 10360735
捐赠科研通 3068866
什么是DOI,文献DOI怎么找? 1685271
邀请新用户注册赠送积分活动 810415
科研通“疑难数据库(出版商)”最低求助积分说明 766130