解码方法
信号(编程语言)
计算机科学
高分辨率
算法
遥感
地理
程序设计语言
作者
Hao Zhang,Xue Wang,Guowei Chen,Yanqiu Zhang,Xiqi Jian,Feng He,Minpeng Xu,Dong Ming
标识
DOI:10.34133/cbsystems.0206
摘要
High spatiotemporal resolution of noninvasive electroencephalography (EEG) signals is an important prerequisite for fine brain-computer manipulation. However, conventional scalp EEG has a low spatial resolution due to the volume conductor effect, making it difficult to accurately identify the intent of brain-computer manipulation. In recent years, transcranial focused ultrasound modulated EEG technology has increasingly become a research hotspot, which is expected to acquire noninvasive acoustoelectric coupling signals with a high spatial and temporal resolution. In view of this, this study established a transcranial focused ultrasound numerical simulation model and experimental platform based on a real brain model and a 128-array phased array, further constructed a 3-dimensional transcranial multisource dipole localization and decoding numerical simulation model and experimental platform based on the acoustic field platform, and developed a high-precision localization and decoding algorithm. The results show that the simulation-guided phased-array acoustic field experimental platform can achieve accurate focusing in both pure water and transcranial conditions within a safe threshold, with a modulation range of 10 mm, and the focal acoustic pressure can be enhanced by more than 200% compared with that of transducer self-focusing. In terms of dipole localization decoding results, the proposed algorithm in this study has a localization signal-to-noise ratio of 24.18 dB, which is 50.59% higher than that of the traditional algorithm, and the source signal decoding accuracy is greater than 0.85. This study provides a reliable experimental basis and technical support for high-spatiotemporal-resolution noninvasive EEG signal acquisition and precise brain-computer manipulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI