Transfer Learning with Pretrained Convolutional Neural Network for Automated Gleason Grading of Prostate Cancer Tissue Microarrays

前列腺癌 分级(工程) 卷积神经网络 前列腺 学习迁移 组织微阵列 残差神经网络 分类 人工智能 医学 计算机科学 癌症 内科学 土木工程 工程类
作者
Parisa Gifani,Ahmad Shalbaf
出处
期刊:Journal of medical signals and sensors [Isfahan University of Medical Sciences]
卷期号:14 (1) 被引量:3
标识
DOI:10.4103/jmss.jmss_42_22
摘要

Abstract Background: The Gleason grading system has been the most effective prediction for prostate cancer patients. This grading system provides this possibility to assess prostate cancer’s aggressiveness and then constitutes an important factor for stratification and therapeutic decisions. However, determining Gleason grade requires highly-trained pathologists and is time-consuming and tedious, and suffers from inter-pathologist variability. To remedy these limitations, this paper introduces an automatic methodology based on transfer learning with pretrained convolutional neural networks (CNNs) for automatic Gleason grading of prostate cancer tissue microarray (TMA). Methods: Fifteen pretrained (CNNs): Efficient Nets (B0-B5), NasNetLarge, NasNetMobile, InceptionV3, ResNet-50, SeResnet 50, Xception, DenseNet121, ResNext50, and inception_resnet_v2 were fine-tuned on a dataset of prostate carcinoma TMA images. Six pathologists separately identified benign and cancerous areas for each prostate TMA image by allocating benign, 3, 4, or 5 Gleason grade for 244 patients. The dataset was labeled by these pathologists and majority vote was applied on pixel-wise annotations to obtain a unified label. Results: Results showed the NasnetLarge architecture is the best model among them in the classification of prostate TMA images of 244 patients with accuracy of 0.93 and area under the curve of 0.98. Conclusion: Our study can act as a highly trained pathologist to categorize the prostate cancer stages with more objective and reproducible results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助tianshuai采纳,获得10
刚刚
小球完成签到 ,获得积分10
2秒前
英姑应助jis采纳,获得10
2秒前
liu完成签到,获得积分10
3秒前
赘婿应助栗子采纳,获得10
3秒前
3秒前
3秒前
二哥的玫瑰完成签到,获得积分10
3秒前
天明发布了新的文献求助10
3秒前
4秒前
共享精神应助小宋采纳,获得10
4秒前
扎心完成签到,获得积分10
5秒前
欣加完成签到,获得积分10
5秒前
积极鱼完成签到 ,获得积分10
5秒前
8秒前
东君发布了新的文献求助10
8秒前
8秒前
8秒前
时尚俊驰发布了新的文献求助10
8秒前
8秒前
RUIRUI完成签到 ,获得积分10
8秒前
luoyi完成签到,获得积分10
9秒前
润润轩轩发布了新的文献求助10
9秒前
耿星驰发布了新的文献求助10
9秒前
天明完成签到,获得积分10
10秒前
10秒前
10秒前
sunny发布了新的文献求助20
10秒前
10秒前
123完成签到,获得积分10
10秒前
Yoo完成签到,获得积分10
10秒前
11秒前
么椰咩完成签到,获得积分10
11秒前
hhhr完成签到,获得积分10
11秒前
11秒前
大个应助莉莉采纳,获得10
11秒前
小右完成签到,获得积分10
12秒前
LL发布了新的文献求助10
13秒前
情怀应助纯真牛排采纳,获得10
13秒前
luoyi发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4464451
求助须知:如何正确求助?哪些是违规求助? 3926839
关于积分的说明 12185827
捐赠科研通 3579582
什么是DOI,文献DOI怎么找? 1966828
邀请新用户注册赠送积分活动 1005440
科研通“疑难数据库(出版商)”最低求助积分说明 899722