A visual detection algorithm for autonomous driving road environment perception

计算机科学 感知 计算机视觉 人工智能 算法 人机交互 生物 神经科学
作者
Peichao Cong,Hao Feng,Shanda Li,Tianheng Li,Yutao Xu,Xin Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108034-108034 被引量:8
标识
DOI:10.1016/j.engappai.2024.108034
摘要

Achieving accurate and real-time perception of environmental targets in complex traffic scenes based on visual sensors is a challenging research problem in the field of autonomous driving technology. In methods to date, it is difficult to effectively balance the detection accuracy and speed. To this end, this paper proposes an interactive and lightweight visual detection algorithm – YRDM (Your Region Decision-Making) – based on the concepts of efficient mining and utilisation of target feature information, lightweight network structure, and optimisation of label allocation for highly practical detection of ambient targets in autonomous driving scenarios. First, a two-stage algorithm architecture consisting of four low-parameter subnetworks is constructed with the goal of efficiently mining and utilising target feature information, and the accuracy and effectiveness of the algorithm are balanced through the interaction of information between the subnetworks. Second, in order to further improve the detection speed, lightweight convolution is introduced into the structure of the YRDM network to construct the DSC3 module, which allows lightweight processing of the subnetwork structure. Finally, by converting the label assignment problem into an optimal transport problem, adaptation to the global nature of the samples by YRDM is improved, allowing better detection accuracy. The algorithm is tested with two major public datasets, BDD100K and KITTI, and a large number of experimental results show that the comprehensive performance of YRDM is better than other existing algorithms. In addition, ablation experiments and mobile terminal device deployment experiments further demonstrate the effectiveness and real-time performance of this algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
细腻思卉发布了新的文献求助10
1秒前
海边的棕榈树完成签到,获得积分10
1秒前
Cxyy完成签到,获得积分10
1秒前
fazat发布了新的文献求助10
5秒前
5秒前
汉堡包应助高兴白莲采纳,获得10
6秒前
留胡子的迎梦完成签到 ,获得积分10
7秒前
7秒前
8秒前
慕青应助hey采纳,获得10
9秒前
科研通AI5应助fazat采纳,获得30
9秒前
King16发布了新的文献求助10
10秒前
赵世璧发布了新的文献求助10
12秒前
Will给Will的求助进行了留言
14秒前
Cxyy发布了新的文献求助10
14秒前
15秒前
jinyu发布了新的文献求助10
21秒前
闪闪航空完成签到 ,获得积分10
21秒前
21秒前
手中的樱花完成签到 ,获得积分10
23秒前
24秒前
大力沛萍发布了新的文献求助10
27秒前
勤恳立轩完成签到,获得积分10
29秒前
科研通AI5应助没有熬夜采纳,获得30
29秒前
红黄蓝发布了新的文献求助30
29秒前
hzx发布了新的文献求助10
30秒前
32秒前
怡然洋葱发布了新的文献求助10
32秒前
33秒前
34秒前
阔达苡完成签到,获得积分10
34秒前
jinyu完成签到,获得积分10
34秒前
WangT发布了新的文献求助10
37秒前
无花果应助梓mua采纳,获得10
37秒前
37秒前
38秒前
孙傲发布了新的文献求助10
39秒前
田様应助susan采纳,获得30
40秒前
领导范儿应助李安全采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4479398
求助须知:如何正确求助?哪些是违规求助? 3936880
关于积分的说明 12213231
捐赠科研通 3591569
什么是DOI,文献DOI怎么找? 1975047
邀请新用户注册赠送积分活动 1012217
科研通“疑难数据库(出版商)”最低求助积分说明 905566