Deep learning-based semantic segmentation of three-dimensional point cloud: a comprehensive review

分割 点云 计算机科学 云计算 深度学习 点(几何) 人工智能 遥感 地质学 数学 几何学 操作系统
作者
Dheerendra Pratap Singh,Manohar Yadav
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:45 (2): 532-586 被引量:7
标识
DOI:10.1080/01431161.2023.2297177
摘要

Point cloud has emerged as the most popular three-dimensional (3D) data format in recent years for several scientific and industrial applications. Point cloud semantic segmentation has piqued the researcher's interest, which is a crucial stage in 3D analysis and scene comprehension. Deep learning-based processing is more feasible to increase the availability of point cloud acquisition tools that is LiDAR systems at the user end. The point cloud learning achieves tremendous success in object detection, object categorization, and semantic segmentation. To summarize the recent works with chronological development, comprehensive review of projection-, voxel-, and direct point-based point cloud semantic segmentation methods is performed from various perspectives. The commonly used point cloud benchmark datasets with their characteristics are discussed, and they are used for the performance analysis and comparison of several state-of-the-art segmentation methods. The quantitative performance analysis of these deep learning models summarizes the trend of semantic segmentation of point clouds. In the context of point cloud semantic segmentation, the various methods have specific roles. Based on the review of methods working and their performance analysis, it is concluded that the projection-based methods prioritize efficiency, which is ideal in unavailability of high-performance computing system. Voxel-based methods capture overall context, serving well in 3D object classification. Point-based approaches excel in fine details and efficiency, suited for tasks like 3D semantic segmentation. Choosing the suitable method depends on the task, data, and resources. KPConv and DGCNN are popular choices, especially for precision and adaptability to point density. However, method performance varies, underlining the need for tailored selection. Hybrid approaches, combining method strengths, promise superior results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lillie完成签到,获得积分10
1秒前
轻松笙完成签到,获得积分10
1秒前
耍酷含芙发布了新的文献求助10
1秒前
认真龙猫完成签到,获得积分20
1秒前
1秒前
Jasper应助yywww采纳,获得30
2秒前
SYLH应助飘零的歌手采纳,获得10
2秒前
科研通AI5应助木木采纳,获得20
2秒前
DOKEN完成签到,获得积分10
3秒前
3秒前
Lucy小影完成签到,获得积分10
4秒前
zyp完成签到,获得积分10
4秒前
罗静完成签到,获得积分10
4秒前
贺雪完成签到,获得积分10
4秒前
火之高兴完成签到 ,获得积分10
4秒前
5秒前
潇湘雪月完成签到,获得积分10
5秒前
zhouyu完成签到 ,获得积分10
6秒前
抹茶蛋仔完成签到,获得积分10
6秒前
缓慢天抒完成签到 ,获得积分10
6秒前
yy发布了新的文献求助10
7秒前
卷大喵完成签到,获得积分10
7秒前
大椒完成签到 ,获得积分10
7秒前
7秒前
少年完成签到,获得积分10
7秒前
认真龙猫发布了新的文献求助10
7秒前
包包酱完成签到,获得积分10
8秒前
橘橘橘子皮完成签到 ,获得积分10
8秒前
orixero应助楠薏采纳,获得10
8秒前
眼睛大世开完成签到 ,获得积分10
8秒前
金枪鱼完成签到,获得积分10
10秒前
jphu完成签到,获得积分10
10秒前
10秒前
Maestro_S应助伍贰肆采纳,获得10
11秒前
呵呵呵完成签到,获得积分10
11秒前
研友_LjbjzL完成签到,获得积分10
11秒前
夜捕白日梦完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830708
求助须知:如何正确求助?哪些是违规求助? 3373047
关于积分的说明 10477167
捐赠科研通 3093166
什么是DOI,文献DOI怎么找? 1702362
邀请新用户注册赠送积分活动 818956
科研通“疑难数据库(出版商)”最低求助积分说明 771173