亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-supervised learning based on Transformer for flow reconstruction and prediction

快照(计算机存储) 雷诺数 计算机科学 变压器 人工智能 机器学习 推论 模式识别(心理学) 物理 机械 电压 量子力学 湍流 操作系统
作者
Bonan Xu,Yuanye Zhou,Xin Bian
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (2) 被引量:7
标识
DOI:10.1063/5.0188998
摘要

Machine learning has great potential for efficient reconstruction and prediction of flow fields. However, existing datasets may have highly diversified labels for different flow scenarios, which are not applicable for training a model. To this end, we make a first attempt to apply the self-supervised learning (SSL) technique to fluid dynamics, which disregards data labels for pre-training the model. The SSL technique embraces a large amount of data (8000 snapshots) at Reynolds numbers of Re = 200, 300, 400, and 500 without discriminating between them, which improves the generalization of the model. The Transformer model is pre-trained via a specially designed pretext task, where it reconstructs the complete flow fields after randomly masking 20% data points in each snapshot. For the downstream task of flow reconstruction, the pre-trained model is fine-tuned separately with 256 snapshots for each Reynolds number. The fine-tuned models accurately reconstruct the complete flow fields based on less than 5% random data points within a limited window even for Re = 250 and 600, whose data were not seen in the pre-trained phase. For the other downstream task of flow prediction, the pre-training model is fine-tuned separately with 128 consecutive snapshot pairs for each corresponding Reynolds number. The fine-tuned models then correctly predict the evolution of the flow fields over many periods of cycles. We compare all results generated by models trained via SSL and models trained via supervised learning, where the former has unequivocally superior performance. We expect that the methodology presented here will have wider applications in fluid mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
楠俊完成签到,获得积分10
26秒前
楠俊发布了新的文献求助10
29秒前
斯文败类应助科研通管家采纳,获得10
38秒前
glaze关注了科研通微信公众号
47秒前
1分钟前
执着乐双完成签到,获得积分10
1分钟前
glaze完成签到,获得积分10
2分钟前
Raul完成签到 ,获得积分10
2分钟前
Milo完成签到,获得积分10
3分钟前
充电宝应助glaze采纳,获得10
3分钟前
科研通AI5应助天庭少女采纳,获得30
3分钟前
4分钟前
天庭少女发布了新的文献求助30
4分钟前
天庭少女完成签到,获得积分10
4分钟前
4分钟前
glaze发布了新的文献求助10
4分钟前
5分钟前
高高元柏发布了新的文献求助10
5分钟前
cc完成签到,获得积分20
5分钟前
科研通AI5应助烟消云散采纳,获得10
5分钟前
Hello应助xiaolang2004采纳,获得10
5分钟前
Luke Gee完成签到 ,获得积分10
5分钟前
6分钟前
schnappi发布了新的文献求助10
6分钟前
6分钟前
烟消云散发布了新的文献求助10
6分钟前
gszy1975完成签到,获得积分10
6分钟前
7分钟前
无花果应助烟消云散采纳,获得10
8分钟前
王婧萱萱萱完成签到 ,获得积分10
8分钟前
Ava应助肆陆采纳,获得10
9分钟前
9分钟前
9分钟前
9分钟前
顺利的小蚂蚁完成签到,获得积分10
9分钟前
肆陆发布了新的文献求助10
9分钟前
13656479046发布了新的文献求助10
9分钟前
10分钟前
烟消云散发布了新的文献求助10
10分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792512
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10282015
捐赠科研通 3053532
什么是DOI,文献DOI怎么找? 1675649
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468