Model-Heterogeneous Semi-Supervised Federated Learning for Medical Image Segmentation

计算机科学 个性化 分割 注释 任务(项目管理) 图像分割 人工智能 机器学习 数据挖掘 情报检索 万维网 管理 经济
作者
Yuxi Ma,Jiacheng Wang,Jing Yang,Liansheng Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (5): 1804-1815 被引量:10
标识
DOI:10.1109/tmi.2023.3348982
摘要

Medical image segmentation is crucial in clinical diagnosis, helping physicians identify and analyze medical conditions. However, this task is often accompanied by challenges like sensitive data, privacy concerns, and expensive annotations. Current research focuses on personalized collaborative training of medical segmentation systems, ignoring that obtaining segmentation annotations is time-consuming and laborious. Achieving a perfect balance between annotation cost and segmentation performance while ensuring local model personalization has become a valuable direction. Therefore, this study introduces a novel Model-Heterogeneous Semi-Supervised Federated (HSSF) Learning framework. It proposes Regularity Condensation and Regularity Fusion to transfer autonomously selective knowledge to ensure the personalization between sites. In addition, to efficiently utilize unlabeled data and reduce the annotation burden, it proposes a Self-Assessment (SA) module and a Reliable Pseudo-Label Generation (RPG) module. The SA module generates self-assessment confidence in real-time based on model performance, and the RPG module generates reliable pseudo-label based on SA confidence. We evaluate our model separately on the Skin Lesion and Polyp Lesion datasets. The results show that our model performs better than other methods characterized by heterogeneity. Moreover, it exhibits highly commendable performance even in homogeneous designs, most notably in region-based metrics. The full range of resources can be readily accessed through the designated repository located at HSSF(github.com) on the platform of GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
olofmeister发布了新的文献求助10
1秒前
伟钧完成签到,获得积分10
1秒前
nihui完成签到 ,获得积分10
1秒前
cjw完成签到,获得积分10
1秒前
科研通AI2S应助wzy13647744027采纳,获得10
2秒前
CHEN完成签到,获得积分10
3秒前
Clairezg完成签到 ,获得积分10
3秒前
危机的安容完成签到,获得积分10
3秒前
ZXB完成签到,获得积分10
4秒前
研友_Z33zkZ完成签到,获得积分10
4秒前
4秒前
可爱的函函应助大方虎采纳,获得10
5秒前
哇哦完成签到,获得积分10
5秒前
隐形曼青应助天降采纳,获得10
6秒前
6秒前
天天快乐应助YY采纳,获得10
7秒前
wzy13647744027完成签到,获得积分10
7秒前
7秒前
CHEN完成签到,获得积分20
8秒前
唯美发布了新的文献求助10
9秒前
9秒前
ppl完成签到,获得积分10
9秒前
111发布了新的文献求助10
9秒前
高帅完成签到,获得积分10
10秒前
baibaili完成签到,获得积分10
10秒前
zhaobudao发布了新的文献求助30
11秒前
11秒前
ZJZALLEN完成签到 ,获得积分10
11秒前
minmin完成签到,获得积分10
11秒前
Reese321完成签到 ,获得积分10
11秒前
852应助olofmeister采纳,获得10
12秒前
深情安青应助12day采纳,获得10
13秒前
13秒前
13秒前
barrychow完成签到,获得积分10
13秒前
Ahsan应助陈昭琼采纳,获得10
13秒前
开放鸿涛完成签到,获得积分10
13秒前
正直敏完成签到,获得积分10
14秒前
潇洒代亦发布了新的文献求助10
15秒前
李可心发布了新的文献求助10
15秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788621
求助须知:如何正确求助?哪些是违规求助? 3333855
关于积分的说明 10265174
捐赠科研通 3049972
什么是DOI,文献DOI怎么找? 1673781
邀请新用户注册赠送积分活动 802206
科研通“疑难数据库(出版商)”最低求助积分说明 760549