Multi-Scale Subgraph Contrastive Learning

比例(比率) 计算机科学 自然语言处理 人工智能 地理 地图学
作者
Yanbei Liu,Yu Zhao,Xiao Wang,Lei Geng,Zhitao Xiao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.02719
摘要

Graph-level contrastive learning, aiming to learn the representations for each graph by contrasting two augmented graphs, has attracted considerable attention. Previous studies usually simply assume that a graph and its augmented graph as a positive pair, otherwise as a negative pair. However, it is well known that graph structure is always complex and multi-scale, which gives rise to a fundamental question: after graph augmentation, will the previous assumption still hold in reality? By an experimental analysis, we discover the semantic information of an augmented graph structure may be not consistent as original graph structure, and whether two augmented graphs are positive or negative pairs is highly related with the multi-scale structures. Based on this finding, we propose a multi-scale subgraph contrastive learning method which is able to characterize the fine-grained semantic information. Specifically, we generate global and local views at different scales based on subgraph sampling, and construct multiple contrastive relationships according to their semantic associations to provide richer self-supervised signals. Extensive experiments and parametric analysis on eight graph classification real-world datasets well demonstrate the effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
6秒前
乐乐应助覆覆盆子采纳,获得10
10秒前
落寞凌波发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
15055368295发布了新的文献求助10
13秒前
传奇3应助落后的纸鹤采纳,获得10
13秒前
绿色催化完成签到,获得积分10
13秒前
13秒前
上帝发誓完成签到,获得积分10
14秒前
leeOOO完成签到,获得积分10
15秒前
15秒前
Hupoo完成签到,获得积分10
16秒前
杜若发布了新的文献求助10
16秒前
17秒前
务实的犀牛完成签到,获得积分20
18秒前
香蕉梨愁发布了新的文献求助10
20秒前
22秒前
漠听流完成签到 ,获得积分10
22秒前
yoonkk完成签到,获得积分10
24秒前
Sean完成签到 ,获得积分10
26秒前
Orange应助Xx丶采纳,获得10
27秒前
27秒前
踏实的南琴完成签到 ,获得积分10
27秒前
28秒前
29秒前
29秒前
29秒前
乐乐应助lyf采纳,获得10
30秒前
星辰大海应助能干戎采纳,获得10
31秒前
31秒前
ahhah发布了新的文献求助10
33秒前
郑嘻嘻发布了新的文献求助10
33秒前
umil发布了新的文献求助10
33秒前
李爱国应助阳光以南采纳,获得10
33秒前
Mizuki完成签到,获得积分10
34秒前
666发布了新的文献求助10
34秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4101153
求助须知:如何正确求助?哪些是违规求助? 3639003
关于积分的说明 11531611
捐赠科研通 3347691
什么是DOI,文献DOI怎么找? 1839773
邀请新用户注册赠送积分活动 906984
科研通“疑难数据库(出版商)”最低求助积分说明 824163