Feature Re-Embedding: Towards Foundation Model-Level Performance in Computational Pathology

基础(证据) 特征(语言学) 嵌入 计算机科学 人工智能 地理 语言学 哲学 考古
作者
Wenhao Tang,Fengtao Zhou,Sheng Huang,Xiang Zhu,Yi Zhang,Bo Liu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2402.17228
摘要

Multiple instance learning (MIL) is the most widely used framework in computational pathology, encompassing sub-typing, diagnosis, prognosis, and more. However, the existing MIL paradigm typically requires an offline instance feature extractor, such as a pre-trained ResNet or a foundation model. This approach lacks the capability for feature fine-tuning within the specific downstream tasks, limiting its adaptability and performance. To address this issue, we propose a Re-embedded Regional Transformer (R$^2$T) for re-embedding the instance features online, which captures fine-grained local features and establishes connections across different regions. Unlike existing works that focus on pre-training powerful feature extractor or designing sophisticated instance aggregator, R$^2$T is tailored to re-embed instance features online. It serves as a portable module that can seamlessly integrate into mainstream MIL models. Extensive experimental results on common computational pathology tasks validate that: 1) feature re-embedding improves the performance of MIL models based on ResNet-50 features to the level of foundation model features, and further enhances the performance of foundation model features; 2) the R$^2$T can introduce more significant performance improvements to various MIL models; 3) R$^2$T-MIL, as an R$^2$T-enhanced AB-MIL, outperforms other latest methods by a large margin. The code is available at:~\href{https://github.com/DearCaat/RRT-MIL}{https://github.com/DearCaat/RRT-MIL}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉八宝粥完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
丘比特应助活泼的觅云采纳,获得10
5秒前
耶?发布了新的文献求助10
6秒前
7秒前
星辰大海应助热心观众采纳,获得10
7秒前
zjy1234完成签到,获得积分10
7秒前
cyz完成签到,获得积分10
8秒前
Joey发布了新的文献求助30
10秒前
12秒前
12秒前
YIBYYDS完成签到,获得积分10
14秒前
tt完成签到 ,获得积分10
15秒前
tailand完成签到,获得积分20
15秒前
深情安青应助耶?采纳,获得10
16秒前
玺烊烊完成签到 ,获得积分20
18秒前
Dailei发布了新的文献求助10
18秒前
19秒前
20秒前
含糊的安柏完成签到,获得积分10
21秒前
shy完成签到,获得积分10
22秒前
科研通AI5应助冷艳水壶采纳,获得10
22秒前
SciGPT应助夕荀采纳,获得10
22秒前
上官若男应助to高坚果采纳,获得10
23秒前
Ava应助plh采纳,获得10
23秒前
酷酷夏天完成签到 ,获得积分10
25秒前
Joey完成签到,获得积分10
25秒前
26秒前
26秒前
归零儿发布了新的文献求助10
27秒前
雪白幻雪完成签到 ,获得积分10
27秒前
28秒前
29秒前
29秒前
30秒前
七月完成签到,获得积分10
31秒前
夕荀完成签到,获得积分10
32秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802084
求助须知:如何正确求助?哪些是违规求助? 3347869
关于积分的说明 10335195
捐赠科研通 3063858
什么是DOI,文献DOI怎么找? 1682232
邀请新用户注册赠送积分活动 807941
科研通“疑难数据库(出版商)”最低求助积分说明 763969