作者
Lina Pang,Xiao Yang,Peidi Zhang,Lei Ding,Jiani Yuan,Haijing Liu,Jin Liu,Xue Gong,Ming Yu,Wen Luo
摘要
Objective
The aim of the work described here was to develop and validate a predictive nomogram based on combined image features of gray-scale ultrasonography (US), elastosonography (ES) and contrast-enhanced US (CEUS) to differentiate malignant from benign American College of Radiology Thyroid Imaging, Reporting and Data System (ACR TI-RADS) 3–5 thyroid nodules. Methods
Among 2767 thyroid nodules scanned by CEUS in Xijing Hospital between April 2014 and November 2018, 669 nodules classified as ACR TI-RADS 3–5 were included, with confirmed diagnosis and ES examination. Four hundred fifty-five nodules were set as a training cohort and 214 as a validation cohort. Images were categorized as gray-scale US ACR TI-RADS 3, TI-RADS 4 and TI-RADS 5; ES patterns of ES-1 and ES-2; and CEUS patterns of either heterogeneous hypo-enhancement, concentric hypo-enhancement, homogeneous hyper-/iso-enhancement, no perfusion, hypo-enhancement with sharp margin, island-like enhancement or ring-like enhancement. On the basis of multivariate logistic regression analysis, a predictive nomogram model was developed and validated by receiver operating characteristic curve analysis. Results
In the training cohort, ACR TI-RADS 4 and 5, ES-2, heterogeneous hypo-enhancement, concentric hypo-enhancement and homogeneous hyper-/iso-enhancement were selected as predictors of malignancy by univariate logistic regression analysis. A predictive nomogram (combining indices of ACR TI-RADS, ES and CEUS) indicated excellent predictive ability for differentiating malignant from benign lesions in the training cohort: area under the receiver operating characteristic curve (AUC) = 0.93, 95% confidence interval (CI): 0.90–0.95. The prediction nomogram model was determined to have a sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 0.84, 0.88, 0.91 and 0.81. In the validation cohort, the AUC of the prediction nomogram model was significantly higher than those of the single modalities (p < 0.005) . The AUCs of the validation cohort were 0.93 (95% CI: 0.89–0.96) and 0.93 (95% CI: 0.89–0.97), respectively, for senior and junior radiologists. The prediction nomogram model has a sensitivity, specificity, PPV and NPV of 0.86, 0.87, 0.87 and 0.86. Conclusion
A predictive nomogram model combining ACR TI-RADS, ES and CEUS exhibited potential clinical utility in differentiating malignant from benign ACR TI-RADS 3–5 thyroid nodules.