SEG-LUS: A novel ultrasound segmentation method for liver and its accessory structures based on muti-head self-attention

计算机科学 分割 背景(考古学) 人工智能 特征(语言学) 计算机辅助设计 任务(项目管理) 模式识别(心理学) 编码器 过程(计算) 计算机视觉 操作系统 哲学 古生物学 经济 管理 生物 生物化学 语言学
作者
Lei Zhang,Xiuming Wu,Jiansong Zhang,Zhonghua Liu,Yuling Fan,Lan Zheng,Peizhong Liu,Haisheng Song,Guorong Lyu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:113: 102338-102338 被引量:13
标识
DOI:10.1016/j.compmedimag.2024.102338
摘要

Although liver ultrasound (US) is quick and convenient, it presents challenges due to patient variations. Previous research has predominantly focused on computer-aided diagnosis (CAD), particularly for disease analysis. However, characterizing liver US images is complex due to structural diversity and a limited number of samples. Normal liver US images are crucial, especially for standard section diagnosis. This study explicitly addresses Liver US standard sections (LUSS) and involves detailed labeling of eight anatomical structures. We propose SEG-LUS, a US image segmentation model for the liver and its accessory structures. In SEG-LUS, we have adopted the shifted windows feature encoder combined with the cross-attention mechanism to adapt to capturing image information at different scales and resolutions and address context mismatch and sample imbalance in the segmentation task. By introducing the UUF module, we achieve the perfect fusion of shallow and deep information, making the information retained by the network in the feature extraction process more comprehensive. We have improved the Focal Loss to tackle the imbalance of pixel-level distribution. The results show that the SEG-LUS model exhibits significant performance improvement, with mPA, mDice, mIOU, and mASD reaching 85.05%, 82.60%, 74.92%, and 0.31, respectively. Compared with seven state-of-the-art semantic segmentation methods, the mPA improves by 5.32%. SEG-LUS is positioned to serve as a crucial reference for research in computer-aided modeling using liver US images, thereby advancing the field of US medicine research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
澄钰羽完成签到,获得积分10
刚刚
lvj21发布了新的文献求助10
刚刚
CodeCraft应助路途采纳,获得10
刚刚
1秒前
hanchangcun发布了新的文献求助10
1秒前
无花果应助追光少年采纳,获得10
2秒前
神勇的不尤完成签到,获得积分10
2秒前
传奇3应助糊涂芒果采纳,获得10
2秒前
renwoxing发布了新的文献求助10
2秒前
winkkk完成签到,获得积分20
3秒前
浅辰完成签到,获得积分10
3秒前
李文豪发布了新的文献求助10
3秒前
FashionBoy应助一只宝贝烊采纳,获得10
3秒前
3秒前
4秒前
4秒前
yggmdggr完成签到,获得积分10
4秒前
GSQ发布了新的文献求助10
4秒前
林兴春完成签到,获得积分20
5秒前
Jackson完成签到,获得积分10
5秒前
5秒前
5秒前
比巴卜完成签到,获得积分10
6秒前
科研通AI5应助榴莲柿子茶采纳,获得10
6秒前
自由马儿发布了新的文献求助10
8秒前
8秒前
比奇堡平平无奇烂虾完成签到,获得积分10
8秒前
Kinkrit发布了新的文献求助10
9秒前
9秒前
9秒前
Jackson发布了新的文献求助10
10秒前
swqswq发布了新的文献求助10
10秒前
宫野珏完成签到,获得积分10
11秒前
搜集达人应助曾经的代曼采纳,获得10
11秒前
11秒前
一只宝贝烊完成签到,获得积分20
12秒前
王明月发布了新的文献求助10
12秒前
renwoxing完成签到,获得积分10
12秒前
烟花应助winkkk采纳,获得30
13秒前
甜甜诗筠发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167192
求助须知:如何正确求助?哪些是违规求助? 4359127
关于积分的说明 13572359
捐赠科研通 4205589
什么是DOI,文献DOI怎么找? 2306477
邀请新用户注册赠送积分活动 1306190
关于科研通互助平台的介绍 1252700