SEG-LUS: A novel ultrasound segmentation method for liver and its accessory structures based on muti-head self-attention

计算机科学 分割 背景(考古学) 人工智能 特征(语言学) 计算机辅助设计 任务(项目管理) 模式识别(心理学) 编码器 过程(计算) 计算机视觉 生物化学 哲学 古生物学 经济 管理 操作系统 生物 语言学
作者
Lei Zhang,Xiuming Wu,Jiansong Zhang,Zhonghua Liu,Yuling Fan,Lan Zheng,Peizhong Liu,Haisheng Song,Guorong Lyu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:113: 102338-102338 被引量:17
标识
DOI:10.1016/j.compmedimag.2024.102338
摘要

Although liver ultrasound (US) is quick and convenient, it presents challenges due to patient variations. Previous research has predominantly focused on computer-aided diagnosis (CAD), particularly for disease analysis. However, characterizing liver US images is complex due to structural diversity and a limited number of samples. Normal liver US images are crucial, especially for standard section diagnosis. This study explicitly addresses Liver US standard sections (LUSS) and involves detailed labeling of eight anatomical structures. We propose SEG-LUS, a US image segmentation model for the liver and its accessory structures. In SEG-LUS, we have adopted the shifted windows feature encoder combined with the cross-attention mechanism to adapt to capturing image information at different scales and resolutions and address context mismatch and sample imbalance in the segmentation task. By introducing the UUF module, we achieve the perfect fusion of shallow and deep information, making the information retained by the network in the feature extraction process more comprehensive. We have improved the Focal Loss to tackle the imbalance of pixel-level distribution. The results show that the SEG-LUS model exhibits significant performance improvement, with mPA, mDice, mIOU, and mASD reaching 85.05%, 82.60%, 74.92%, and 0.31, respectively. Compared with seven state-of-the-art semantic segmentation methods, the mPA improves by 5.32%. SEG-LUS is positioned to serve as a crucial reference for research in computer-aided modeling using liver US images, thereby advancing the field of US medicine research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官翠花发布了新的文献求助20
刚刚
十叶月完成签到,获得积分10
刚刚
青阳发布了新的文献求助10
刚刚
刚刚
柚子关注了科研通微信公众号
1秒前
SICAU_ZY发布了新的文献求助10
1秒前
Orange应助飞快的橘子采纳,获得10
1秒前
Akim应助科研小白采纳,获得10
1秒前
善学以致用应助月亮采纳,获得10
1秒前
1秒前
1秒前
Elan发布了新的文献求助10
1秒前
猪猪hero应助ly普鲁卡因采纳,获得10
1秒前
2秒前
ljh1771完成签到,获得积分10
2秒前
Z1026完成签到,获得积分10
3秒前
3秒前
3秒前
认真的谷蓝完成签到,获得积分10
4秒前
4秒前
线性谐振子完成签到,获得积分10
4秒前
4秒前
南城完成签到 ,获得积分10
4秒前
科研通AI6应助xuleiman采纳,获得10
4秒前
明芷蝶发布了新的文献求助10
4秒前
4秒前
4秒前
脑洞疼应助牛蛙丶丶采纳,获得10
5秒前
max完成签到,获得积分10
5秒前
李爱国应助风一起采纳,获得10
5秒前
5秒前
伊莱le发布了新的文献求助10
6秒前
dong发布了新的文献求助10
6秒前
6秒前
6秒前
静oo完成签到,获得积分10
6秒前
6秒前
等等完成签到,获得积分20
7秒前
LaTeXer应助火星上的摩托采纳,获得60
7秒前
怡然冷安发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721