Improved prediction of hourly PM2.5 concentrations with a long short-term memory and spatio-temporal causal convolutional network deep learning model

均方误差 主成分分析 空气质量指数 深度学习 突出 人工智能 相关系数 期限(时间) 特征(语言学) 卷积神经网络 计算机科学 相关性 机器学习 统计 气象学 数学 地理 语言学 物理 哲学 几何学 量子力学
作者
Yinsheng Chen,Lin Huang,Xiaodong Xie,Zhenxin Liu,Jianlin Hu
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:912: 168672-168672 被引量:11
标识
DOI:10.1016/j.scitotenv.2023.168672
摘要

Accurate prediction of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) is important for environmental management and human health protection. In recent years, many efforts have been devoted to develop air quality predictions using the machine learning and deep learning techniques. In this study, we propose a deep learning model for short-term PM2.5 predictions. The salient feature of the proposed model is that the convolution in the model architecture is causal, where the output of a time step is only convolved with components of the same or earlier time step from the previous layer. The model also weighs the spatial correlation between multiple monitoring stations. Through temporal and spatial correlation analysis, relevant information is screened from the monitoring stations with a strong relationship with the target station. Information from the target and related sites is then taken as input and fed into the model. A case study is conducted in Nanjing, China from January 1, 2020 to December 31, 2020. Using historical air quality and meteorological data from nine monitoring stations, the model predicts PM2.5 concentrations for the next hour. The experimental results show that the predicted PM2.5 concentrations are consistent with observation, with correlation coefficient (R2) and Root Mean Squared Error (RMSE) of our model are 0.92 and 6.75 μg/m3. Additionally, to better understand the factors affecting PM2.5 levels in different seasons, a machine learning algorithm based on Principal Component Analysis (PCA) is used to analyze the correlations between PM2.5 and its influencing factors. By identifying the main factors affecting PM2.5 and optimizing the input of the predictive model, the application of PCA in the model further improves the prediction accuracy, with decrease of up to 17.2 % in RMSE and 38.6 % in mean absolute error (MAE). The deep learning model established in this study provide a valuable tool for air quality management and public health protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文右三发布了新的文献求助10
刚刚
jason发布了新的文献求助10
刚刚
刚刚
1秒前
孙燕应助A8采纳,获得20
1秒前
慕青应助leena采纳,获得10
1秒前
2秒前
3秒前
CodeCraft应助踏实的师采纳,获得10
3秒前
adi完成签到,获得积分10
4秒前
魔幻秋烟完成签到 ,获得积分10
4秒前
大个应助帅帅采纳,获得10
5秒前
超帅乐荷应助闪闪凡霜采纳,获得10
5秒前
Jasper应助超帅的又槐采纳,获得50
6秒前
6秒前
爆米花应助LiXF采纳,获得10
6秒前
任性白云发布了新的文献求助10
6秒前
花花花花发布了新的文献求助10
6秒前
乾乾完成签到,获得积分10
7秒前
link485发布了新的文献求助10
7秒前
7秒前
脑洞疼应助王梓磬采纳,获得10
7秒前
科研123人完成签到,获得积分10
8秒前
9秒前
9秒前
尚帝完成签到,获得积分10
10秒前
11秒前
领导范儿应助Cathy采纳,获得10
12秒前
文峰发布了新的文献求助10
12秒前
科研探索者完成签到,获得积分10
12秒前
搞怪的紫易完成签到,获得积分10
12秒前
Ava应助link485采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
迅速钥匙发布了新的文献求助20
13秒前
水何澹澹完成签到,获得积分0
14秒前
小燕子完成签到 ,获得积分10
14秒前
14秒前
完美世界应助西海岸的风采纳,获得10
15秒前
boltos完成签到,获得积分20
16秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3880644
求助须知:如何正确求助?哪些是违规求助? 3422854
关于积分的说明 10732199
捐赠科研通 3147823
什么是DOI,文献DOI怎么找? 1736714
邀请新用户注册赠送积分活动 838476
科研通“疑难数据库(出版商)”最低求助积分说明 783850