已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sentiment Analysis in Online Product Reviews: Mining Customer Opinions for Sentiment Classification

情绪分析 计算机科学 人工智能 自然语言处理 分类 卷积神经网络 深度学习 杠杆(统计) 机器学习 产品(数学) 数学 几何学
作者
Lakshay Bharadwaj -
出处
期刊:International Journal For Multidisciplinary Research [International Journal for Multidisciplinary Research (IJFMR)]
卷期号:5 (5) 被引量:12
标识
DOI:10.36948/ijfmr.2023.v05i05.6090
摘要

Online product reviews have become a valuable resource for consumers seeking detailed information and making informed choices. The process of automatically extracting sentiment or opinions from these reviews heavily relies on sentiment analysis, a branch of Natural Language Processing (NLP). This research article focuses on sentiment categorization in online product evaluations, utilizing innovative techniques for mining consumer opinions. The project aims to establish a robust framework for sentiment analysis that accurately classifies emotions expressed in these reviews. The proposed system incorporates advanced deep learning and machine learning methods to enhance data classification and extract fine-grained sentiment information. The study addresses the unique challenges of sentiment analysis in the context of online product evaluations, including polarity changes, sarcasm, and domain-specific sentiment expressions, which often pose significant obstacles to precise sentiment classification. The approach combines feature engineering and deep learning techniques, extracting lexical, syntactic, and semantic features such as part-of-speech tags, n-grams, sentiment lexicons, and word embeddings from the review texts. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are employed as sophisticated neural network architectures to leverage these features, creating robust representations and capturing contextual information. The suggested architecture is extensively evaluated on a large dataset of online product reviews, demonstrating superior performance in sentiment categorization compared to existing approaches. The evaluation encompasses various sentiment classes, measuring metrics like accuracy, recall, and F1-score, and assessing the framework's adaptability to different product domains. The study showcases the effectiveness of advanced machine learning and deep learning algorithms in sentiment categorization, advancing the field of sentiment analysis for online product evaluations. Businesses can gain valuable insights into customer sentiment and make well-informed decisions regarding product enhancements and marketing strategies by leveraging the proposed framework

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kyfbrahha完成签到 ,获得积分10
4秒前
共享精神应助Hermon采纳,获得10
8秒前
乔治哇完成签到 ,获得积分10
11秒前
shimhjy应助科研通管家采纳,获得10
21秒前
xiaokang123应助科研通管家采纳,获得10
22秒前
shimhjy应助科研通管家采纳,获得10
22秒前
HP完成签到,获得积分20
25秒前
不羁完成签到 ,获得积分10
32秒前
32秒前
Perion完成签到 ,获得积分10
34秒前
不羁关注了科研通微信公众号
36秒前
None完成签到 ,获得积分10
36秒前
HP发布了新的文献求助10
36秒前
积极的南蕾完成签到 ,获得积分10
39秒前
zho应助Wangran采纳,获得10
42秒前
科目三应助刘睿涵采纳,获得10
43秒前
liufan完成签到 ,获得积分10
45秒前
起风了完成签到 ,获得积分10
48秒前
49秒前
50秒前
LiXingchen发布了新的文献求助10
55秒前
刘睿涵发布了新的文献求助10
56秒前
科研小帅完成签到,获得积分10
57秒前
二丙完成签到 ,获得积分10
1分钟前
执念完成签到 ,获得积分10
1分钟前
在水一方应助Mona采纳,获得10
1分钟前
1分钟前
Hello应助刘睿涵采纳,获得10
1分钟前
Mona发布了新的文献求助10
1分钟前
Orange应助磕盐民工采纳,获得10
1分钟前
1分钟前
su完成签到 ,获得积分10
1分钟前
啦啦啦完成签到,获得积分10
1分钟前
chenyy12386关注了科研通微信公众号
1分钟前
cc完成签到 ,获得积分10
1分钟前
肖圣凯完成签到,获得积分10
1分钟前
老实的鹰完成签到 ,获得积分10
1分钟前
NexusExplorer应助HP采纳,获得10
1分钟前
鲤鱼完成签到,获得积分10
1分钟前
风中黎昕完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807998
求助须知:如何正确求助?哪些是违规求助? 3352672
关于积分的说明 10359922
捐赠科研通 3068640
什么是DOI,文献DOI怎么找? 1685183
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766022