Robotic Drilling of Aluminum Alloy

钻探 推力 演习 机械加工 GSM演进的增强数据速率 机械工程 刀具磨损 计算机科学 材料科学 工程类 人工智能
作者
Fouad Messaoudi,Abdelhakim Djebara,Mohamed Djennane
出处
期刊:Periodica Polytechnica Mechanical Engineering [Periodica Polytechnica, Budapest University of Technology and Economics]
卷期号:67 (3): 235-251
标识
DOI:10.3311/ppme.22757
摘要

This paper presents an experimental approach to evaluate the ability of a six-axis industrial robot to drill aluminum alloy parts. A strategy based on statistical tests has been studied to quantify and predict the relative contribution of cutting parameters on cutting force and shape errors during drilling. This technique is based on the identification of relevant sources of error during high-speed robotic fitting. The machining quality was quantified in terms of dimensional and geometric tolerance, chip formation and evacuation, burr formation, edge build-up, tool wear and surface damage. Statistical analysis of the experimental results reveals a strong dependence between part accuracy and drilling force. An experimental model was developed to represent and predict the cutting force during drilling and an accurate error prediction capability was distinguished. It was found that at high cutting speed and feed rate, the cutting force was the main source of error affecting the accuracy of the machined parts. Verification experiments are performed, and the results reveal that dimensional defects are significantly reduced by a heat treatment effect (90 HRE) and the thrust force decreases with an increase in cutting speed. The recommended cutting speed for robotic drilling is 6000 rpm with a feed rate of 0.15 mm/min. This study provides important technical guidance for improving the robotic drilling of aluminum alloy in practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
平凡发布了新的文献求助10
2秒前
3秒前
自信的慕青完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
苑阿宇完成签到 ,获得积分10
4秒前
郭彩虹发布了新的文献求助10
5秒前
5秒前
lili发布了新的文献求助10
5秒前
5秒前
hrj完成签到,获得积分10
6秒前
6秒前
xjx发布了新的文献求助10
6秒前
6秒前
完美世界应助Flac采纳,获得10
6秒前
甜蜜静白发布了新的文献求助10
7秒前
立军发布了新的文献求助50
7秒前
xvan完成签到,获得积分10
7秒前
宣登仕发布了新的文献求助10
7秒前
zland发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
hansJAMA发布了新的文献求助30
9秒前
碧蓝丹烟发布了新的文献求助10
9秒前
炙热的之瑶完成签到,获得积分10
9秒前
10秒前
10秒前
爆米花应助weee采纳,获得10
10秒前
茜茜喝水吨吨吨完成签到 ,获得积分10
10秒前
泡在冰里完成签到,获得积分20
10秒前
11秒前
12秒前
sasa完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469224
求助须知:如何正确求助?哪些是违规求助? 4572331
关于积分的说明 14335257
捐赠科研通 4499207
什么是DOI,文献DOI怎么找? 2464985
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051