Development of a Machine Learning-Based Prognostic Model for Hormone Receptor-Positive Breast Cancer Using Nine-Gene Expression Signature

医学 乳腺癌 队列 肿瘤科 间质细胞 内科学 基因签名 癌症 癌症研究 基因 基因表达 生物 遗传学
作者
Takashi Terauchi,Hirotaka Iwase,Rongrong Wu,Danya Ziazadeh,Li Yan,Kazuaki Takabe
出处
期刊:World Journal of Oncology [Elmer Press, Inc.]
卷期号:14 (5): 406-422
标识
DOI:10.14740/wjon1700
摘要

Background: Determining the prognosis of hormone receptor positive (HR + ) breast cancer (BC), which accounts for 80% of all BCs, is critical in improving survival outcomes. Stratifying individuals at high risk of BC-related mortality and improving prognosis has been the focus of research for over a decade. However, these tools are not universal as they are limited to clinical factors. We hypothesized that a new framework for predicting prognosis in HR + BC patients can develop using artificial intelligence. Methods: A total of 2,338 HR + human epidermal growth factor receptor 2 negative (HER2 - ) BC cases were analyzed from Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), The Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) cohorts. Groups were then divided into high- and low-risk categories utilizing a recurrence prediction model (RPM). An RPM was created by extracting nine prognosis-related genes from over 18,000 genes using a logistic progression model. Results: Risk classification by RPM was significantly stratified in both the discovery cohort and validation cohort. In the time-dependent area under the curve analysis, there was some variation depending on the cohort, but accuracy was found to decline significantly after about 10 years. Cell cycle related gene sets, MYC, and PI3K-AKT-mTOR signaling were enriched in high-risk tumors by the Gene Set Enrichment Analysis. High-risk tumors were associated with high levels of immune cells from the lymphoid and myeloid lineage and immune cytolytic activity, as well as low levels of stem cells and stromal cells. High-risk tumors were also associated with poor therapeutic effects of chemotherapy and endocrine therapy. Conclusions: This model was able to stratify prognosis in multiple cohorts. This is because the model reflects major BC therapeutic target pathways and tumor immune microenvironment and, further is supported by the therapeutic effect of chemotherapy and endocrine therapy. World J Oncol. 2023;14(5):406-422 doi: https://doi.org/10.14740/wjon1700
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助豆⑧采纳,获得10
刚刚
1233330完成签到 ,获得积分10
7秒前
打打应助家立诚采纳,获得10
8秒前
10秒前
小黄完成签到,获得积分10
11秒前
什么也难不倒我完成签到 ,获得积分10
12秒前
12秒前
12秒前
聪慧语山完成签到 ,获得积分10
13秒前
豆⑧发布了新的文献求助10
14秒前
139完成签到 ,获得积分0
14秒前
15秒前
852应助小丫头采纳,获得10
15秒前
17秒前
18秒前
19秒前
yujx发布了新的文献求助10
22秒前
Andorchid完成签到,获得积分10
23秒前
科研通AI5应助Hui采纳,获得10
23秒前
慕青应助老夫子采纳,获得10
24秒前
24秒前
旧梦如烟发布了新的文献求助10
24秒前
guangshuang发布了新的文献求助10
24秒前
xiongqi完成签到 ,获得积分10
25秒前
吾问无为谓完成签到,获得积分20
25秒前
科研通AI2S应助asdfqwer采纳,获得10
29秒前
30秒前
qi完成签到,获得积分10
30秒前
31秒前
33秒前
35秒前
老夫子完成签到,获得积分10
35秒前
欧阳静芙完成签到,获得积分10
36秒前
小丫头发布了新的文献求助10
36秒前
ganzhongxin完成签到,获得积分10
36秒前
夏侯德东完成签到,获得积分10
36秒前
科研通AI2S应助asdfqwer采纳,获得10
36秒前
科研通AI5应助yujx采纳,获得10
37秒前
37秒前
呼呼呼等风来完成签到,获得积分10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781029
求助须知:如何正确求助?哪些是违规求助? 3326508
关于积分的说明 10227468
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669541
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734