亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Severe aortic stenosis detection by deep learning applied to echocardiography

医学 接收机工作特性 胸骨旁线 深度学习 狭窄 心脏病学 主动脉瓣狭窄 内科学 人工智能 放射科 计算机科学
作者
Gregory Holste,Evangelos Oikonomou,Bobak J. Mortazavi,Andreas Coppi,Kamil F. Faridi,Edward J. Miller,John K. Forrest,Robert L. McNamara,Lucila Ohno-Machado,Neal Yuan,Aakriti Gupta,David Ouyang,Harlan M. Krumholz,Zhangyang Wang,Rohan Khera
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (43): 4592-4604 被引量:5
标识
DOI:10.1093/eurheartj/ehad456
摘要

Abstract Background and Aims Early diagnosis of aortic stenosis (AS) is critical to prevent morbidity and mortality but requires skilled examination with Doppler imaging. This study reports the development and validation of a novel deep learning model that relies on two-dimensional (2D) parasternal long axis videos from transthoracic echocardiography without Doppler imaging to identify severe AS, suitable for point-of-care ultrasonography. Methods and results In a training set of 5257 studies (17 570 videos) from 2016 to 2020 [Yale-New Haven Hospital (YNHH), Connecticut], an ensemble of three-dimensional convolutional neural networks was developed to detect severe AS, leveraging self-supervised contrastive pretraining for label-efficient model development. This deep learning model was validated in a temporally distinct set of 2040 consecutive studies from 2021 from YNHH as well as two geographically distinct cohorts of 4226 and 3072 studies, from California and other hospitals in New England, respectively. The deep learning model achieved an area under the receiver operating characteristic curve (AUROC) of 0.978 (95% CI: 0.966, 0.988) for detecting severe AS in the temporally distinct test set, maintaining its diagnostic performance in geographically distinct cohorts [0.952 AUROC (95% CI: 0.941, 0.963) in California and 0.942 AUROC (95% CI: 0.909, 0.966) in New England]. The model was interpretable with saliency maps identifying the aortic valve, mitral annulus, and left atrium as the predictive regions. Among non-severe AS cases, predicted probabilities were associated with worse quantitative metrics of AS suggesting an association with various stages of AS severity. Conclusion This study developed and externally validated an automated approach for severe AS detection using single-view 2D echocardiography, with potential utility for point-of-care screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助鱼猫采纳,获得10
12秒前
13秒前
17秒前
zhou发布了新的文献求助10
18秒前
30秒前
33秒前
1分钟前
洞两发布了新的文献求助10
1分钟前
1分钟前
咸鸭蛋完成签到 ,获得积分10
1分钟前
1分钟前
小蘑菇应助洞两采纳,获得10
1分钟前
木子媚媚发布了新的文献求助10
1分钟前
TEMPO发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
不想制造学术垃圾的垃圾完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
洞两发布了新的文献求助10
2分钟前
2分钟前
浮游应助鱼猫采纳,获得10
2分钟前
2分钟前
2分钟前
木子媚媚完成签到,获得积分10
2分钟前
星辰大海应助洞两采纳,获得10
2分钟前
慕子完成签到 ,获得积分10
2分钟前
2分钟前
在水一方完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
yuchangkun完成签到,获得积分10
2分钟前
yuchangkun发布了新的文献求助10
2分钟前
2分钟前
Linden_bd完成签到 ,获得积分10
2分钟前
鱼猫完成签到,获得积分20
2分钟前
2分钟前
无极微光应助yuchangkun采纳,获得20
2分钟前
充电宝应助唐阳采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488503
求助须知:如何正确求助?哪些是违规求助? 4587316
关于积分的说明 14413618
捐赠科研通 4518671
什么是DOI,文献DOI怎么找? 2475964
邀请新用户注册赠送积分活动 1461489
关于科研通互助平台的介绍 1434379