亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence and heart failure: A state‐of‐the‐art review

心力衰竭 亚临床感染 医学 疾病 射血分数 重症监护医学 危险分层 人工智能 机器学习 计算机科学 内科学
作者
Muhammad Shahzeb Khan,Muhammad Sameer Arshad,Stephen J. Greene,Harriette G.C. Van Spall,Ambarish Pandey,Sreekanth Vemulapalli,Eric Perakslis,Javed Butler
出处
期刊:European Journal of Heart Failure [Wiley]
卷期号:25 (9): 1507-1525 被引量:65
标识
DOI:10.1002/ejhf.2994
摘要

Abstract Heart failure (HF) is a heterogeneous syndrome affecting more than 60 million individuals globally. Despite recent advancements in understanding of the pathophysiology of HF, many issues remain including residual risk despite therapy, understanding the pathophysiology and phenotypes of patients with HF and preserved ejection fraction, and the challenges related to integrating a large amount of disparate information available for risk stratification and management of these patients. Risk prediction algorithms based on artificial intelligence (AI) may have superior predictive ability compared to traditional methods in certain instances. AI algorithms can play a pivotal role in the evolution of HF care by facilitating clinical decision making to overcome various challenges such as allocation of treatment to patients who are at highest risk or are more likely to benefit from therapies, prediction of adverse outcomes, and early identification of patients with subclinical disease or worsening HF. With the ability to integrate and synthesize large amounts of data with multidimensional interactions, AI algorithms can supply information with which physicians can improve their ability to make timely and better decisions. In this review, we provide an overview of the AI algorithms that have been developed for establishing early diagnosis of HF, phenotyping HF with preserved ejection fraction, and stratifying HF disease severity. This review also discusses the challenges in clinical deployment of AI algorithms in HF, and the potential path forward for developing future novel learning‐based algorithms to improve HF care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
28秒前
1分钟前
1分钟前
1分钟前
Cherish发布了新的文献求助10
1分钟前
Tanya完成签到 ,获得积分10
1分钟前
manjusaka发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
大模型应助务实的罡采纳,获得10
1分钟前
1分钟前
桃李春风一杯酒完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
manjusaka发布了新的文献求助10
2分钟前
彭于晏应助wyx采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
JamesPei应助wyx采纳,获得10
2分钟前
duan完成签到 ,获得积分10
2分钟前
李颜龙完成签到,获得积分10
2分钟前
桃子完成签到 ,获得积分10
3分钟前
3分钟前
wyx发布了新的文献求助10
3分钟前
陶醉的烤鸡完成签到 ,获得积分10
3分钟前
3分钟前
牛牛完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
ATX760发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
激动的雁菡完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454959
求助须知:如何正确求助?哪些是违规求助? 4562235
关于积分的说明 14284961
捐赠科研通 4486104
什么是DOI,文献DOI怎么找? 2457241
邀请新用户注册赠送积分活动 1447850
关于科研通互助平台的介绍 1423075