Supervised and self-supervised learning-based cascade spatiotemporal fusion framework and its application

计算机科学 人工智能 一致性(知识库) 传感器融合 融合 空间分析 监督学习 深度学习 模式识别(心理学) 相互信息 机器学习 数据挖掘 人工神经网络 遥感 地理 哲学 语言学
作者
Weixuan Sun,Jie Li,Menghui Jiang,Qiangqiang Yuan
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:203: 19-36 被引量:1
标识
DOI:10.1016/j.isprsjprs.2023.07.022
摘要

Spatiotemporal fusion (STF) is considered an effective way to address the mutual constraints of the spatiotemporal resolutions of the remote sensing images from a single satellite sensor. Although the deep learning (DL)-based STF methods have shown great potential so far, there are still some deficiencies. Supervised DL-based methods usually train the network on the original scale data with richer spatial information, but they utilize only the data at auxiliary dates to generate the fusion data at prediction dates, which may perform poorly when significant spatiotemporal changes occur between the auxiliary and prediction dates. For self-supervised DL-based methods, the training can focus more on the data at prediction dates, but the network is generally trained on the down-sampled data with less spatial information, causing insufficient spatial structures of the fusion results. Based on the above, we innovatively combine supervised and self-supervised learning and propose a dual-stage cascade STF framework. In the first stage, a model based on supervised learning is trained on the data at auxiliary dates to extract abundant spatial features and obtain the initial fusion results. In the second stage, we utilize a self-supervised strategy to excavate the spatiotemporal features of prediction dates based on the initial fusion results and the observed data at prediction dates. In addition, to alleviate the insufficient consideration of the temporal correlation in existing STF methods, we design a temporal consistency loss function to fully utilize the temporal correlation information between multiple prediction dates to generate more accurate fusion results. The proposed framework can not only realize the STF of remote sensing images but also be well applied to the STF of remote sensing products such as land surface temperature (LST). Based on the quantitative results of three datasets, the proposed method improves the quantitative indices of root mean square error (RMSE), structural similarity (SSIM), erreur relative global adimensionnelle de synthese (ERGAS), peak signal to noise ratio (PSNR), and spectral angle mapper (SAM) by up to 0.2014, 0.0279, 0.6797, 0.7629, and 0.2006 at most compared with the best comparison method, which fully shows the superiority of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依依完成签到 ,获得积分10
1秒前
宝儿柯察金完成签到,获得积分10
1秒前
卡卡发布了新的文献求助10
1秒前
2秒前
小晓晓完成签到,获得积分10
3秒前
4秒前
6秒前
愉快凌晴完成签到,获得积分10
7秒前
橘子发布了新的文献求助10
7秒前
8秒前
科研通AI5应助青青采纳,获得10
8秒前
新威宝贝发布了新的文献求助10
9秒前
去晒月亮发布了新的文献求助10
12秒前
13秒前
Tiwiiw完成签到 ,获得积分10
14秒前
冷艳薯片完成签到,获得积分10
16秒前
ChiHiRo9Q应助杨幂采纳,获得10
17秒前
17秒前
Ws完成签到,获得积分10
17秒前
张小馨完成签到 ,获得积分10
18秒前
18秒前
20秒前
研友_8WzJOZ完成签到,获得积分10
21秒前
郭凯辉发布了新的文献求助10
22秒前
赛因斯完成签到,获得积分10
22秒前
29秒前
月光入梦完成签到 ,获得积分10
32秒前
美好的小馒头完成签到,获得积分20
33秒前
33秒前
李123456完成签到,获得积分10
33秒前
可爱的函函应助惠向雁采纳,获得30
34秒前
科研通AI5应助hodge采纳,获得10
35秒前
ohcepf发布了新的文献求助10
36秒前
36秒前
小金星星完成签到 ,获得积分10
36秒前
37秒前
如意完成签到,获得积分10
40秒前
42秒前
科研通AI5应助科研通管家采纳,获得10
42秒前
42秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332279
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681729
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852