Multi-view graph imputation network

计算机科学 初始化 插补(统计学) 缺少数据 数据挖掘 图形 嵌入 理论计算机科学 人工智能 机器学习 程序设计语言
作者
Xin Peng,Jieren Cheng,Xiangyan Tang,Bin Zhang,Wenxuan Tu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:102: 102024-102024 被引量:5
标识
DOI:10.1016/j.inffus.2023.102024
摘要

Graph data in the real world is often accompanied by the problem of missing attributes. Recently, self-supervised graph representation learning, implementing data imputation according to observable nodes, has become a paradigm for studying attribute-missing graphs. However, existing methods directly encode attribute-missing graphs and then impute attribute-missing nodes in the latent space, which often increases the uncertainty of node embedding information, thereby limiting the performance of attribute imputation. To address this issue, we propose a novel method named Multi-view GrAph impuTation nEtwork (MATE), which performs attribute imputation in the input space for attribute-missing graphs. Specifically, we first employ parameter initialization and graph diffusion in the input space to generate relatively complete multi-view from both the attribute and structure levels. To provide reliable guidance in each epoch for parameter initialization, we propose a Dual Constraint Strategy (DCS) that maximizes the consistency of node embeddings between two views. In this way, the learning of parameter initialization and node embedding promotes each other, thus effectively improving the quality of attribute imputation. Extensive experiments on four benchmark datasets demonstrate that our proposed MATE achieves state-of-the-art performance. The corresponding code is available at https://github.com/XinPeng97/MATE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张张发布了新的文献求助10
刚刚
木影忆发布了新的文献求助10
1秒前
zzz完成签到,获得积分10
1秒前
2秒前
2秒前
迅速友容完成签到 ,获得积分10
2秒前
TT完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
accept应助Song采纳,获得10
5秒前
可夫司机发布了新的文献求助10
5秒前
开心的小谢完成签到,获得积分10
7秒前
7秒前
7秒前
小蘑菇应助shYnEss采纳,获得10
7秒前
11完成签到 ,获得积分10
7秒前
谦让新竹发布了新的文献求助10
8秒前
DR完成签到,获得积分10
8秒前
8秒前
8秒前
照九州完成签到,获得积分10
8秒前
元谷雪发布了新的文献求助10
9秒前
9秒前
9秒前
言不由衷发布了新的文献求助30
9秒前
这瓜不卖发布了新的文献求助10
9秒前
Hello应助剪影改采纳,获得10
9秒前
jnuzhou发布了新的文献求助10
10秒前
科研通AI5应助liuyong6413采纳,获得10
11秒前
12秒前
不缺人YYDS完成签到,获得积分10
12秒前
白衣完成签到,获得积分10
13秒前
ZY完成签到,获得积分10
13秒前
tangpc发布了新的文献求助10
13秒前
13秒前
Ava应助PAD采纳,获得10
13秒前
自觉忆山完成签到,获得积分10
13秒前
kingwill应助娥娥采纳,获得20
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790659
求助须知:如何正确求助?哪些是违规求助? 3335459
关于积分的说明 10274985
捐赠科研通 3051977
什么是DOI,文献DOI怎么找? 1674949
邀请新用户注册赠送积分活动 802929
科研通“疑难数据库(出版商)”最低求助积分说明 761001