Long‐Range Order and Strong Quantum Coupling Enabled Stable Carrier Transport for Reliable Neuromorphic Computing

神经形态工程学 材料科学 联轴节(管道) 航程(航空) 量子 量子计算机 订单(交换) 光电子学 纳米技术 化学物理 计算机科学 量子力学 人工神经网络 物理 人工智能 财务 经济 复合材料 冶金
作者
Zhiqing Wang,Jie Shen,Keqiang Chen,Jing Yang,Qiao Wang,Zhiwen Yin,Zhi‐Yi Hu,Jianrong Zeng,Pengchao Zhang,Wen Chen,Jing Zhou
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202509083
摘要

Abstract Bio‐inspired neuromorphic computing based on memristors holds significant potential for performing massively parallel computational tasks with high accuracy. However, its practical application is significantly limited by poor reliability, primarily due to instability in carrier transport. Here, long‐range ordered quantum dot (QD) superlattices with strong quantum coupling is presented to enable carrier transport stability and improve device reliability. Leveraging a data‐assisted QD synthesis optimization loop, Cu 12 Sb 4 S 13 QDs are synthesized with precisely controlled growth kinetics, crystal orientation, and surface chemistry. These QDs self‐assemble into long‐range ordered superlattices on flexible substrates, achieving a 56% reduction in inter‐dot spacing (to 0.92 nm), aligned lattice orientations, and a 4.4‐fold increase in carrier mobility. This architecture enables strong quantum coupling, effectively overcoming the limitations imposed by localized quantum‐confined states. As a result, the QD‐based memristors exhibit remarkable reliability, with variations below 0.1% over 8.4 × 10 7 s of continuous operation and 10 6 rapid read cycles. They further demonstrate linear potentiation and depression characteristics ( v p = 2.03 and v d = 2.33), a wide conductance range (G max /G min = 264), and high recognition accuracy (93.31%) as validated by chip‐level convolutional neural network simulations. This work establishes a robust and flexible platform for memristor‐based neuromorphic computing, offering a promising route to overcoming critical challenges in device reliability and computational performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ail完成签到,获得积分10
刚刚
杨杨发布了新的文献求助10
1秒前
leshi完成签到,获得积分20
1秒前
爆米花应助三生石采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
孙志豪完成签到,获得积分10
2秒前
Sam十九发布了新的文献求助10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
脑洞疼应助23333采纳,获得10
2秒前
执着谷兰应助科研通管家采纳,获得20
3秒前
不安青牛应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
执着谷兰应助科研通管家采纳,获得20
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Lees应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得20
4秒前
bioli完成签到,获得积分10
4秒前
4秒前
lmw发布了新的文献求助10
4秒前
lgq12697应助碧蓝问梅采纳,获得20
5秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 1000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4436255
求助须知:如何正确求助?哪些是违规求助? 3910653
关于积分的说明 12145535
捐赠科研通 3556883
什么是DOI,文献DOI怎么找? 1952239
邀请新用户注册赠送积分活动 992337
科研通“疑难数据库(出版商)”最低求助积分说明 887900