Four-hour thunderstorm nowcasting using a deep diffusion model of satellite data

临近预报 雷雨 卫星 气象学 扩散 气候学 环境科学 地理 计算机科学 遥感 地质学 航空航天工程 工程类 物理 热力学
作者
Kuai Dai,Xutao Li,Junying Fang,Yunming Ye,Demin Yu,Di Xian,Danyu Qin
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2404.10512
摘要

Convection (thunderstorm) develops rapidly within hours and is highly destructive, posing a significant challenge for nowcasting and resulting in substantial losses to infrastructure and society. After the emergence of artificial intelligence (AI)-based methods, convection nowcasting has experienced rapid advancements, with its performance surpassing that of physics-based numerical weather prediction and other conventional approaches. However, the lead time and coverage of it still leave much to be desired and hardly meet the needs of disaster emergency response. Here, we propose a deep diffusion model for satellite data (DDMS) to establish an AI-based convection nowcasting system. Specifically, DDMS employs diffusion processes to effectively simulate complicated spatiotemporal evolution patterns of convective clouds, achieving more accurate forecasts of convective growth and dissipation over longer lead times. Additionally, it combines geostationary satellite brightness temperature data and domain knowledge from meteorological experts, thereby achieving planetary-scale forecast coverage. During long-term tests and objective validation based on the FengYun-4A satellite, our system achieves, for the first time, effective convection nowcasting up to 4 hours, with broad coverage (about 20,000,000 km2), remarkable accuracy, and high resolution (15 minutes; 4 km). Its performance reaches a new height in convection nowcasting compared to the existing models. In terms of application, our system is highly transferable with the potential to collaborate with multiple satellites for global convection nowcasting. Furthermore, our results highlight the remarkable capabilities of diffusion models in convective clouds forecasting, as well as the significant value of geostationary satellite data when empowered by AI technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖胖胖胖完成签到,获得积分10
1秒前
NexusExplorer应助橙子雨采纳,获得10
1秒前
2秒前
英吉利25发布了新的文献求助10
4秒前
Drtaoao完成签到 ,获得积分10
4秒前
夜轩岚发布了新的文献求助10
7秒前
bai完成签到 ,获得积分10
7秒前
超越发布了新的文献求助10
9秒前
光亮语梦完成签到 ,获得积分10
13秒前
16秒前
彼得力完成签到,获得积分10
16秒前
皮皮完成签到,获得积分10
18秒前
小北发布了新的文献求助10
19秒前
小沫发布了新的文献求助10
20秒前
Andrew完成签到,获得积分0
22秒前
Owen应助Jere采纳,获得20
22秒前
23秒前
24秒前
25秒前
31秒前
31秒前
云一朵完成签到,获得积分10
34秒前
Dester发布了新的文献求助10
36秒前
蓝天给@@@的求助进行了留言
37秒前
sfliufighting发布了新的文献求助10
39秒前
Cleo应助Dester采纳,获得20
42秒前
一只羚羊完成签到 ,获得积分10
42秒前
Akim应助auggy采纳,获得10
44秒前
drtianyunhong完成签到,获得积分10
44秒前
顾矜应助蓝莓西西果冻采纳,获得10
45秒前
GB关注了科研通微信公众号
48秒前
Wmmmmm完成签到,获得积分10
48秒前
Dester完成签到,获得积分10
49秒前
50秒前
51秒前
FashionBoy应助sfliufighting采纳,获得10
53秒前
抹茶肥肠完成签到,获得积分10
53秒前
情怀应助佩奇666采纳,获得10
54秒前
55秒前
千寻发布了新的文献求助10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557634
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668874
捐赠科研通 4584158
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488842
关于科研通互助平台的介绍 1459533