An Improved YOLOv8 Algorithm for Rail Surface Defect Detection

计算机科学 算法
作者
Yan Wang,Kehua Zhang,Ling Wang,Lintong Wu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 44984-44997 被引量:8
标识
DOI:10.1109/access.2024.3380009
摘要

To tackle the issues raised by detecting small targets and densely occluded targets in railroad track surface defect detection, we present an algorithm for detecting defects on railroad tracks based on the YOLOv8 model. Firstly, we enhance the model's attention towards small and medium-sized targets by substituting replacing the original convolution with the SPD-Conv building block in the backbone network of YOLOv8n, while preserving the original network structure. Secondly, we integrate the integrating the EMA attention mechanism module into the neck component, allowing the model to leverage information from different layers of features and improve feature representation capabilities. Lastly, we substitute the original C-IOU with the Focal-SIoU loss function in YOLOv8., which adjusts the weights of positive and negative samples to penalize difficult-to-classify samples more heavily. This enhancement improves the model's capability to accurately recognize challenging samples and ensures that the network allocates greater attention to each target instance, resulting in improved performance and effectiveness of the model. The experimental results reveal notable advancements in precision, recall, and average accuracy attained by our enhanced algorithm. Compared to the original YOLOv8n model, our enhanced algorithm demonstrates remarkable precision, recall, and average accuracy of 93.9%, 93.7%, and 94.1%, respectively. These improvements amount to 3.6%, 5.0%, and 5.7%, respectively. Notably, these enhancements are accomplished while maintaining the dimensions of the model and the parameter count. During the identification of defects on railroad track surfaces, our improved algorithm surpasses other widely used algorithms in terms of performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
greentea完成签到,获得积分10
1秒前
YingxueRen完成签到,获得积分10
2秒前
2秒前
2秒前
思源应助爱吃肥牛采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
smartlailai发布了新的文献求助10
4秒前
ladyguagua完成签到,获得积分10
4秒前
4秒前
叠森完成签到,获得积分10
4秒前
云尘忆梦发布了新的文献求助150
5秒前
5秒前
Lucas应助粗犷的夏菡采纳,获得50
5秒前
小罗发布了新的文献求助10
5秒前
6秒前
LDY发布了新的文献求助10
6秒前
ppf完成签到,获得积分20
6秒前
太阳完成签到 ,获得积分10
7秒前
YingyingFan发布了新的文献求助10
7秒前
Yuy发布了新的文献求助10
7秒前
7秒前
Zmy完成签到,获得积分10
7秒前
圈儿多尼发布了新的文献求助10
7秒前
传奇3应助嘎嘎采纳,获得10
7秒前
8秒前
科研通AI5应助William采纳,获得30
8秒前
8秒前
猷鲛发布了新的文献求助10
8秒前
9秒前
9秒前
雪团粉毛发布了新的文献求助10
9秒前
冷酷向薇完成签到,获得积分10
9秒前
夕阳昏红发布了新的文献求助10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790576
求助须知:如何正确求助?哪些是违规求助? 3335344
关于积分的说明 10274460
捐赠科研通 3051907
什么是DOI,文献DOI怎么找? 1674860
邀请新用户注册赠送积分活动 802890
科研通“疑难数据库(出版商)”最低求助积分说明 760964