Real-Time Large-Motion Deblurring for Gimbal-Based Imaging Systems

去模糊 万向节 计算机视觉 计算机科学 人工智能 运动(物理) 图像处理 图像复原 图像(数学) 工程类 航空航天工程
作者
Nisha Varghese,A. N. Rajagopalan,Zahir Ahmed Ansari
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:18 (3): 346-357 被引量:5
标识
DOI:10.1109/jstsp.2024.3386056
摘要

Robotic systems employed in tasks such as navigation, target tracking, security, and surveillance often use camera gimbal systems to enhance their monitoring and security capabilities. These camera gimbal systems undergo fast to-and-fro rotational motion to surveil the extended field of view (FOV). A high steering rate (rotation angle per second) of the gimbal is essential to revisit a given scene as fast as possible, which results in significant motion blur in the captured video frames. Real-time motion deblurring is essential in surveillance robots since the subsequent image-processing tasks demand immediate availability of blur-free images. Existing deep learning (DL) based motion deblurring methods either lack real-time performance due to network complexity or suffer from poor deblurring quality for large motion blurs. In this work, we propose a Gyro-guided Network for Real-time motion deblurring (GRNet) which makes effective use of existing prior information to improve deblurring without increasing the complexity of the network. The steering rate of the gimbal is taken as a prior for data generation. A contrastive learning scheme is introduced for the network to learn the amount of blur in an image by utilizing the knowledge of blur content in images during training. To the GRNet, a sharp reference image is additionally given as input to guide the deblurring process. The most relevant features from the reference image are selected using a cross-attention module. Our method works in real-time at 30 fps. As a first, we propose a Gimbal Yaw motion Real-wOrld (GYRO) dataset of infrared (IR) as well as color images with significant motion blur along with the inertial measurements of camera rotation, captured by a gimbal-based imaging setup where the gimbal undergoes rotational yaw motion. Both qualitative and quantitative evaluations on our proposed GYRO dataset, demonstrate the practical utility of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎日新完成签到,获得积分10
刚刚
曲奇发布了新的文献求助10
刚刚
QY完成签到,获得积分10
1秒前
完美世界应助146907350采纳,获得10
1秒前
呵呵喊我发布了新的文献求助10
1秒前
1秒前
小萝卜头吖完成签到,获得积分10
2秒前
idea发布了新的文献求助10
2秒前
康泽发布了新的文献求助10
3秒前
大浪淘沙完成签到 ,获得积分10
3秒前
小青椒应助deeferf采纳,获得60
3秒前
cmao20完成签到,获得积分10
3秒前
pinkham_chen完成签到,获得积分10
3秒前
liu关注了科研通微信公众号
4秒前
4秒前
kk完成签到,获得积分10
4秒前
luraaaa完成签到,获得积分10
4秒前
滴滴迪迪发布了新的文献求助30
5秒前
烽烟发布了新的文献求助10
5秒前
明亮的三颜完成签到 ,获得积分10
6秒前
想睡觉的小笼包完成签到 ,获得积分10
7秒前
7秒前
7秒前
Siriluck发布了新的文献求助10
8秒前
qixingbao07126完成签到,获得积分10
8秒前
科研渣渣完成签到,获得积分10
9秒前
zhuding1978发布了新的文献求助10
9秒前
10秒前
10秒前
Mark完成签到,获得积分10
10秒前
10秒前
知意完成签到,获得积分10
10秒前
11秒前
SUN发布了新的文献求助10
12秒前
wzx完成签到,获得积分10
12秒前
打打应助研友_WnqdrL采纳,获得10
13秒前
牧野七发布了新的文献求助10
15秒前
ssss发布了新的文献求助10
15秒前
15秒前
明亮的三颜关注了科研通微信公众号
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5153744
求助须知:如何正确求助?哪些是违规求助? 4349386
关于积分的说明 13541696
捐赠科研通 4192106
什么是DOI,文献DOI怎么找? 2299286
邀请新用户注册赠送积分活动 1299252
关于科研通互助平台的介绍 1244272