Machine learning and optical coherence tomography-derived radiomics analysis to predict persistent diabetic macular edema in patients undergoing anti-VEGF intravitreal therapy

光学相干层析成像 逻辑回归 医学 机器学习 人工智能 支持向量机 判别式 接收机工作特性 糖尿病 内科学 眼科 计算机科学 内分泌学
作者
Zhishang Meng,Yanzhu Chen,Haoyu Li,Yue Zhang,Xiaoxi Yao,Yongan Meng,Wen Shi,Youling Liang,Yun Hu,Dan Liú,Manyun Xie,Bin Yan,Jing Luo
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:22 (1)
标识
DOI:10.1186/s12967-024-05141-7
摘要

Abstract Background Diabetic macular edema (DME) is a leading cause of vision loss in patients with diabetes. This study aimed to develop and evaluate an OCT-omics prediction model for assessing anti-vascular endothelial growth factor (VEGF) treatment response in patients with DME. Methods A retrospective analysis of 113 eyes from 82 patients with DME was conducted. Comprehensive feature engineering was applied to clinical and optical coherence tomography (OCT) data. Logistic regression, support vector machine (SVM), and backpropagation neural network (BPNN) classifiers were trained using a training set of 79 eyes, and evaluated on a test set of 34 eyes. Clinical implications of the OCT-omics prediction model were assessed by decision curve analysis. Performance metrics (sensitivity, specificity, F1 score, and AUC) were calculated. Results The logistic, SVM, and BPNN classifiers demonstrated robust discriminative abilities in both the training and test sets. In the training set, the logistic classifier achieved a sensitivity of 0.904, specificity of 0.741, F1 score of 0.887, and AUC of 0.910. The SVM classifier showed a sensitivity of 0.923, specificity of 0.667, F1 score of 0.881, and AUC of 0.897. The BPNN classifier exhibited a sensitivity of 0.962, specificity of 0.926, F1 score of 0.962, and AUC of 0.982. Similar discriminative capabilities were maintained in the test set. The OCT-omics scores were significantly higher in the non-persistent DME group than in the persistent DME group ( p < 0.001). OCT-omics scores were also positively correlated with the rate of decline in central subfield thickness after treatment (Pearson’s R = 0.44, p < 0.001). Conclusion The developed OCT-omics model accurately assesses anti-VEGF treatment response in DME patients. The model’s robust performance and clinical implications highlight its utility as a non-invasive tool for personalized treatment prediction and retinal pathology assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助cui采纳,获得10
1秒前
4秒前
random完成签到,获得积分10
4秒前
lizhiqian2024发布了新的文献求助10
7秒前
小枫5977完成签到 ,获得积分10
7秒前
8秒前
9秒前
NSS完成签到,获得积分10
10秒前
整齐泥猴桃完成签到,获得积分10
10秒前
11秒前
善学以致用应助彭于晏采纳,获得30
11秒前
13秒前
zgt01应助光亮笑柳采纳,获得10
13秒前
自信的丸子完成签到,获得积分10
13秒前
LXP发布了新的文献求助10
14秒前
cui发布了新的文献求助10
14秒前
14秒前
明明完成签到 ,获得积分10
14秒前
充电宝应助LXP采纳,获得10
20秒前
KYT完成签到,获得积分10
20秒前
zhang发布了新的文献求助10
20秒前
cui完成签到,获得积分10
20秒前
共享精神应助FSR采纳,获得10
23秒前
24秒前
26秒前
xhm完成签到 ,获得积分10
26秒前
29秒前
隐形松发布了新的文献求助10
31秒前
ZQ完成签到,获得积分10
33秒前
Shine完成签到 ,获得积分10
34秒前
34秒前
KK完成签到,获得积分10
35秒前
ding应助洁净白容采纳,获得10
36秒前
刘家斌给刘家斌的求助进行了留言
36秒前
37秒前
赵文若完成签到,获得积分20
38秒前
电催化托完成签到,获得积分20
39秒前
39秒前
等待的夜香完成签到,获得积分10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782970
求助须知:如何正确求助?哪些是违规求助? 3328291
关于积分的说明 10235710
捐赠科研通 3043489
什么是DOI,文献DOI怎么找? 1670517
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759065