已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of a prediction model for the risk of 30-day unplanned readmission in older patients with heart failure: A multicenter retrospective study

医学 心理干预 心力衰竭 超参数优化 接收机工作特性 入射(几何) 急诊医学 风险评估 超参数 内科学 机器学习 计算机科学 支持向量机 计算机安全 精神科 光学 物理
作者
Yang Zhang,Haolin Wang,Chengliang Yin,Tingting Shu,Jie Yu,Jie Jian,Jian Chang,Minjie Duan,Kaisaierjiang Kadier,Qian Xu,Xueer Wang,Tianyu Xiang,Xiaozhu Liu
出处
期刊:Nutrition Metabolism and Cardiovascular Diseases [Elsevier BV]
卷期号:33 (10): 1878-1887 被引量:6
标识
DOI:10.1016/j.numecd.2023.05.034
摘要

Heart failure (HF) imposes significant global health costs due to its high incidence, readmission, and mortality rate. Accurate assessment of readmission risk and precise interventions have become important measures to improve health for patients with HF. Therefore, this study aimed to develop a machine learning (ML) model to predict 30-day unplanned readmissions in older patients with HF.This study collected data on hospitalized older patients with HF from the medical data platform of Chongqing Medical University from January 1, 2012, to December 31, 2021. A total of 5 candidate algorithms were selected from 15 ML algorithms with excellent performance, which was evaluated by area under the operating characteristic curve (AUC) and accuracy. Then, the 5 candidate algorithms were hyperparameter tuned by 5-fold cross-validation grid search, and performance was evaluated by AUC, accuracy, sensitivity, specificity, and recall. Finally, an optimal ML model was constructed, and the predictive results were explained using the SHapley Additive exPlanations (SHAP) framework. A total of 14,843 older patients with HF were consecutively enrolled. CatBoost model was selected as the best prediction model, and AUC was 0.732, with 0.712 accuracy, 0.619 sensitivity, and 0.722 specificity. NT.proBNP, length of stay (LOS), triglycerides, blood phosphorus, blood potassium, and lactate dehydrogenase had the greatest effect on 30-day unplanned readmission in older patients with HF, according to SHAP results.The study developed a CatBoost model to predict the risk of unplanned 30-day special-cause readmission in older patients with HF, which showed more significant performance compared with the traditional logistic regression model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
瓦力完成签到 ,获得积分10
2秒前
4秒前
nnl发布了新的文献求助10
5秒前
芒果完成签到,获得积分10
6秒前
SYLH应助负责觅海采纳,获得10
6秒前
Jess2147发布了新的文献求助30
7秒前
Xiaoqiu完成签到 ,获得积分10
8秒前
HLQF完成签到,获得积分10
8秒前
Ava应助wafo采纳,获得10
9秒前
坦率的书竹完成签到 ,获得积分10
9秒前
13秒前
塔菲尔完成签到 ,获得积分10
17秒前
科研通AI5应助Darlene采纳,获得10
18秒前
渔渔完成签到 ,获得积分10
18秒前
19秒前
智慧爷爷发布了新的文献求助10
19秒前
nnl完成签到,获得积分10
20秒前
24秒前
xuanxuan发布了新的文献求助40
24秒前
Jess2147完成签到,获得积分10
25秒前
oo完成签到,获得积分10
26秒前
李健的小迷弟应助quanshijie采纳,获得10
27秒前
28秒前
lizhiqian2024发布了新的文献求助10
31秒前
hyhyhyhy发布了新的文献求助10
31秒前
32秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
Akim应助科研通管家采纳,获得10
33秒前
小二郎应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
35秒前
陈一完成签到,获得积分10
37秒前
38秒前
绵绵发布了新的文献求助50
38秒前
风趣问雁完成签到 ,获得积分10
38秒前
智慧爷爷完成签到,获得积分10
39秒前
quanshijie发布了新的文献求助10
40秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800747
求助须知:如何正确求助?哪些是违规求助? 3346292
关于积分的说明 10328703
捐赠科研通 3062711
什么是DOI,文献DOI怎么找? 1681163
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763654