已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Heat transport in liquid water from first-principles and deep neural network simulations

热导率 密度泛函理论 物理 人工神经网络 统计物理学 应用数学 热力学 计算机科学 量子力学 数学 人工智能
作者
Davide Tisi,Linfeng Zhang,Riccardo Bertossa,Han Wang,Roberto Car,Stefano Baroni
出处
期刊:Physical review [American Physical Society]
卷期号:104 (22) 被引量:55
标识
DOI:10.1103/physrevb.104.224202
摘要

We compute the thermal conductivity of water within linear response theory from equilibrium molecular dynamics simulations, by adopting two different approaches. In one, the potential energy surface (PES) is derived on the fly from the electronic ground state of density functional theory (DFT) and the corresponding analytical expression is used for the energy flux. In the other, the PES is represented by a deep neural network (DNN) trained on DFT data, whereby the PES has an explicit local decomposition and the energy flux takes a particularly simple expression. By virtue of a gauge invariance principle, established by Marcolongo, Umari, and Baroni, the two approaches should be equivalent if the PES were reproduced accurately by the DNN model. We test this hypothesis by calculating the thermal conductivity, at the GGA (PBE) level of theory, using the direct formulation and its DNN proxy, finding that both approaches yield the same conductivity, in excess of the experimental value by approximately 60%. Besides being numerically much more efficient than its direct DFT counterpart, the DNN scheme has the advantage of being easily applicable to more sophisticated DFT approximations, such as meta-GGA and hybrid functionals, for which it would be hard to derive analytically the expression of the energy flux. We find in this way that a DNN model, trained on meta-GGA (SCAN) data, reduces the deviation from experiment of the predicted thermal conductivity by about 50%, leaving the question open as to whether the residual error is due to deficiencies of the functional, to a neglect of nuclear quantum effects in the atomic dynamics, or, likely, to a combination of the two.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
6秒前
苏苏苏发布了新的文献求助10
7秒前
顾矜应助Hzyaccept采纳,获得10
7秒前
杏林小生发布了新的文献求助10
8秒前
keikei完成签到,获得积分10
8秒前
9秒前
三叔发布了新的文献求助10
10秒前
whb666发布了新的文献求助10
10秒前
大脸兔狲完成签到 ,获得积分10
12秒前
许阳发布了新的文献求助10
12秒前
12秒前
16秒前
16秒前
富贵儿完成签到 ,获得积分10
18秒前
18秒前
Ava应助寂寞致幻采纳,获得10
21秒前
Hzyaccept发布了新的文献求助10
21秒前
无月完成签到 ,获得积分10
22秒前
SCI的芷蝶完成签到 ,获得积分10
23秒前
刘zy发布了新的文献求助10
24秒前
CipherSage应助荼白采纳,获得10
24秒前
充电宝应助许阳采纳,获得10
25秒前
25秒前
25秒前
李爱国应助Nobody采纳,获得10
27秒前
可爱的函函应助南吕廿八采纳,获得10
27秒前
28秒前
里鱼发布了新的文献求助10
29秒前
山竹派派完成签到 ,获得积分10
31秒前
dt发布了新的文献求助10
31秒前
32秒前
32秒前
寂寞致幻发布了新的文献求助10
35秒前
费老三发布了新的文献求助10
35秒前
36秒前
绵绵完成签到 ,获得积分10
37秒前
许阳发布了新的文献求助10
37秒前
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792373
求助须知:如何正确求助?哪些是违规求助? 3336550
关于积分的说明 10281350
捐赠科研通 3053280
什么是DOI,文献DOI怎么找? 1675560
邀请新用户注册赠送积分活动 803529
科研通“疑难数据库(出版商)”最低求助积分说明 761436