Rolling Bearing Sub-Health Recognition via Extreme Learning Machine Based on Deep Belief Network Optimized by Improved Fireworks

极限学习机 深信不疑网络 人工智能 计算机科学 稳健性(进化) 模式识别(心理学) 人工神经网络 算法 机器学习 生物化学 基因 化学
作者
Hao Luo,Chao He,Jianing Zhou,Li Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 42013-42026 被引量:18
标识
DOI:10.1109/access.2021.3064962
摘要

Rolling bearings, as the main components of the large industrial rotating equipment, usually work under complex conditions and are prone to break down. It can provide a certain theoretical basis for identifying the sub-health state of the industrial equipment by the analysis from the incipient weak signals. Thus, a sub-health recognition offline algorithm based on Refined Composite Multiscale Dispersion Entropy (RCMDE) and Deep Belief Network-Extreme Learning Machine (DBN-ELM) optimized by Improved Firework Algorithm (IFWA) is proposed. First of all, in light of the drawbacks that it is easy to fall into local optima and cross the boundary for exploding fireworks in Firework Algorithm (FWA), Cauchy mutation and adaptive dynamic explosion radius factor coefficient is introduced into IFWA. Secondly, Maximum Correlation Kurtosis Deconvolution (MCKD) optimized by the improved parameters is used to process the incipient vibration signals with nonlinearity, nonstationary, and IFWA is used to adaptively adjust to the period T and the filter length L in MCKD(IFWA-MCKD). Then, each sequence of signals is further extracted the feature-RCMDE to rich sample diversity. Finally, combining the powerful unsupervised learning capability from DBN and the generalization capability from ELM, DBN-ELM can be established. What's more, in order to avoid the interference of human on the parameters, IFWA is used to optimize the number of hidden nodes in DBN-ELM, and the IFWA-DBN-ELM is established. It shows that the algorithm has the higher sub-health recognition accuracy, better robustness and generalization, which has a better industrial application prospect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星星完成签到,获得积分10
1秒前
FashionBoy应助威武的莫茗采纳,获得10
2秒前
3秒前
晋启轩发布了新的文献求助10
3秒前
万能图书馆应助热心乐松采纳,获得10
3秒前
4秒前
4秒前
金鑫水淼完成签到,获得积分10
5秒前
空耳大师发布了新的文献求助10
5秒前
5秒前
6秒前
李健的小迷弟应助杨山坡采纳,获得10
6秒前
sleep举报12366666求助涉嫌违规
8秒前
8秒前
ho发布了新的文献求助30
8秒前
9秒前
lan发布了新的文献求助10
9秒前
wmz发布了新的文献求助100
10秒前
充电宝应助韩韩采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
666yj完成签到 ,获得积分10
12秒前
乔治发布了新的文献求助10
15秒前
小华完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
orixero应助晋启轩采纳,获得10
17秒前
19秒前
hahah发布了新的文献求助10
20秒前
21秒前
tczw667完成签到,获得积分10
22秒前
23秒前
23秒前
苗条八宝粥完成签到,获得积分10
24秒前
不咸完成签到,获得积分10
24秒前
樱铃发布了新的文献求助10
24秒前
JamesPei应助韩韩采纳,获得10
24秒前
睿睿发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532650
求助须知:如何正确求助?哪些是违规求助? 4621382
关于积分的说明 14577620
捐赠科研通 4561234
什么是DOI,文献DOI怎么找? 2499258
邀请新用户注册赠送积分活动 1479203
关于科研通互助平台的介绍 1450406