A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects

卷积神经网络 计算机科学 人工智能 数据科学
作者
Zewen Li,Fan Liu,Wenjie Yang,Shouheng Peng,Jun Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (12): 6999-7019 被引量:2647
标识
DOI:10.1109/tnnls.2021.3084827
摘要

A convolutional neural network (CNN) is one of the most significant networks in the deep learning field. Since CNN made impressive achievements in many areas, including but not limited to computer vision and natural language processing, it attracted much attention from both industry and academia in the past few years. The existing reviews mainly focus on CNN's applications in different scenarios without considering CNN from a general perspective, and some novel ideas proposed recently are not covered. In this review, we aim to provide some novel ideas and prospects in this fast-growing field. Besides, not only 2-D convolution but also 1-D and multidimensional ones are involved. First, this review introduces the history of CNN. Second, we provide an overview of various convolutions. Third, some classic and advanced CNN models are introduced; especially those key points making them reach state-of-the-art results. Fourth, through experimental analysis, we draw some conclusions and provide several rules of thumb for functions and hyperparameter selection. Fifth, the applications of 1-D, 2-D, and multidimensional convolution are covered. Finally, some open issues and promising directions for CNN are discussed as guidelines for future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助杨洁采纳,获得10
刚刚
我是老大应助登山人采纳,获得10
刚刚
科研通AI2S应助大力水手采纳,获得10
1秒前
1秒前
2秒前
zho发布了新的文献求助10
3秒前
aaron9898完成签到,获得积分10
3秒前
传奇3应助jia采纳,获得10
3秒前
beyond完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
谦让乐曲完成签到,获得积分10
5秒前
风华正茂发布了新的文献求助30
5秒前
充电宝应助激昂的背包采纳,获得10
6秒前
98484应助苹果白凡采纳,获得10
6秒前
大可发布了新的文献求助10
7秒前
忧伤的大壮完成签到,获得积分10
7秒前
zll发布了新的文献求助10
8秒前
SYLH应助lei029采纳,获得10
8秒前
追梦完成签到 ,获得积分10
8秒前
123456发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
11秒前
gaberella发布了新的文献求助10
11秒前
12秒前
12秒前
阿Q完成签到,获得积分10
12秒前
激昂的背包完成签到,获得积分10
14秒前
失眠星星发布了新的文献求助10
14秒前
14秒前
14秒前
保住头发为科研完成签到,获得积分20
15秒前
李健的小迷弟应助倾慕采纳,获得10
16秒前
甜甜匪发布了新的文献求助10
16秒前
16秒前
16秒前
Priority发布了新的文献求助30
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791854
求助须知:如何正确求助?哪些是违规求助? 3336180
关于积分的说明 10279353
捐赠科研通 3052855
什么是DOI,文献DOI怎么找? 1675375
邀请新用户注册赠送积分活动 803385
科研通“疑难数据库(出版商)”最低求助积分说明 761265