回路热管
材料科学
传热
热阻
散热片
热管
热撒布器
热导率
传热系数
热流密度
复合材料
蒸发器
多孔性
工作液
热力学
毛细管作用
微回路热管
热交换器
物理
作者
Randeep Singh,Aliakbar Akbarzadeh,Masataka Mochizuki
摘要
Two phase heat transfer devices based on the miniature version of loop heat pipe (LHP) can provide very promising cooling solutions for the compact electronic devices due to their high heat flux management capability and long distance heat transfer with minimal temperature losses. This paper discusses the effect of the wick properties on the heat transfer characteristics of the miniature LHP. The miniature model of the LHP with disk-shaped evaporator, 10 mm thick and 30 mm disk diameter, was designed using copper containment vessel and water as the working fluid, which is the most acceptable combination in electronic cooling applications. In the investigation, wick structures with different physical properties including thermal conductivity, pore radius, porosity, and permeability and with different structural topology including monoporous or biporous evaporating face were used. It was experimentally observed that copper wicks are able to provide superior thermal performance than nickel wicks, particularly for low to moderate heat loads due to their low heat conducting resistance. With monoporous copper wick, maximum evaporator heat transfer coefficient (hev) of 26,270 W/m2 K and evaporator thermal resistance (Rev) of 0.06–0.10°C/W were achieved. For monoporous nickel wick, the corresponding values were 20,700 W/m2 K for hev and 0.08–0.21°C/W for Rev. Capillary structure with smaller pore size, high porosity, and high permeability showed better heat transfer characteristics due to sufficient capillary pumping capability, low heat leaks from evaporator to compensation chamber and larger surface area to volume ratio for heat exchange. In addition to this, biporous copper wick structure showed much higher heat transfer coefficient of 83,787 W/m2 K than monoporous copper wick due to improved evaporative heat transfer at wick wall interface and separated liquid and vapor flow pores. The present work was able to classify the importance of the wick properties in the improvement of the thermal characteristics for miniature loop heat pipes.
科研通智能强力驱动
Strongly Powered by AbleSci AI