Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures

碳纳米管 材料科学 纳米技术 莲花效应 涂层 表面能 化学气相沉积 超疏水涂料 复合材料 纳米尺度 化学工程 微尺度化学 超亲水性 纳米结构 基质(水族馆) 润湿 结构着色 石墨烯 接触角 纳米管 数学教育 数学 有机化学 化学 原材料
作者
Pengwei Wang,Tianyi Zhao,Ruixin Bian,Guangyan Wang,Huan Liu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:11 (12): 12385-12391 被引量:104
标识
DOI:10.1021/acsnano.7b06371
摘要

Superhydrophobic carbon nanotube (CNT) films have demonstrated many fascinating performances in versatile applications, especially for those involving solid/liquid interfacial processes, because of their ability to affect the material/energy transfer at interfaces. Thus, developing superhydrophobic CNTs has attracted extensive research interests in the past decades, and it could be achieved either by surface coating of low-free energy materials or by constructing micro/nanohierarchical structures via various complicated processes. So far, developing a simple approach to fabricate stable superhydrophobic CNTs remains a challenge because the capillary force induced coalescence frequently happens when interacting with liquid. Herein, drawing inspirations from the lotus leaf, we proposed a simple one-step chemical vapor deposition approach with programmable controlled gas flow to directly fabricate a CNT film with rather stable superhydrophobicity, which can effectively prevent even small water droplets from permeating into the film. The robust superhydrophobicity was attributable to typical lotus-leaf-like micro/nanoscale hierarchical surface structures of the CNT film, where many microscale clusters composed of entangled nanotubes randomly protrude out of the under-layer aligned nanotubes. Consequently, dual-scale air pockets were trapped within each microscale CNT cluster and between, which could largely reduce the liquid/solid interface, leading to a Cassie state. Moreover, the superhydrophobicity of the CNT film showed excellent durability after long time exposure to air and even to corrosive liquids with a wide range of pH values. We envision that the approach developed is advantageous for versatile physicochemical interfacial processes, such as drag reduction, electrochemical catalysis, anti-icing, and biosensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余闻问完成签到,获得积分10
刚刚
1秒前
1秒前
油麦完成签到 ,获得积分10
2秒前
百香果bxg完成签到 ,获得积分10
2秒前
棠梨子完成签到,获得积分10
3秒前
着急的小松鼠完成签到,获得积分10
3秒前
orixero应助初之采纳,获得10
3秒前
1111完成签到 ,获得积分10
3秒前
研友_8QxN1Z完成签到,获得积分10
3秒前
跳跃的惮发布了新的文献求助20
3秒前
leo完成签到,获得积分10
4秒前
CC0113发布了新的文献求助100
5秒前
碧蓝丹秋发布了新的文献求助10
5秒前
6秒前
秋子完成签到,获得积分10
6秒前
7秒前
yuan完成签到,获得积分10
7秒前
SOLOMON应助大吴克采纳,获得10
7秒前
三巡完成签到,获得积分10
8秒前
H_H完成签到,获得积分10
9秒前
11秒前
lizongying完成签到 ,获得积分10
11秒前
benny279完成签到,获得积分10
11秒前
野生狐狸完成签到,获得积分10
14秒前
智慧少女不头秃完成签到,获得积分10
14秒前
mmddlj完成签到 ,获得积分10
15秒前
爱科研的小潘完成签到,获得积分10
15秒前
15秒前
是问完成签到 ,获得积分10
16秒前
大梅子清清淡淡完成签到,获得积分10
16秒前
二十八发布了新的文献求助10
16秒前
lm0703完成签到,获得积分10
17秒前
一路发发发发发完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
罚克由尔完成签到,获得积分10
18秒前
SciGPT应助小巧孤菱采纳,获得20
19秒前
19秒前
高分求助中
Thermodynamic data for steelmaking 3000
藍からはじまる蛍光性トリプタンスリン研究 400
Cardiology: Board and Certification Review 400
A History of the Global Economy 350
[Lambert-Eaton syndrome without calcium channel autoantibodies] 340
New Words, New Worlds: Reconceptualising Social and Cultural Geography 300
NEW VALUES OF SOLUBILITY PARAMETERS FROM VAPOR PRESSURE DATA 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2364990
求助须知:如何正确求助?哪些是违规求助? 2073792
关于积分的说明 5184529
捐赠科研通 1801351
什么是DOI,文献DOI怎么找? 899670
版权声明 557920
科研通“疑难数据库(出版商)”最低求助积分说明 480043