Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures

碳纳米管 材料科学 纳米技术 莲花效应 涂层 表面能 化学气相沉积 复合材料 纳米尺度 微尺度化学 数学 数学教育 有机化学 化学 原材料
作者
Pengwei Wang,Tianyi Zhao,Ruixin Bian,Guangyan Wang,Huan Liu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:11 (12): 12385-12391 被引量:163
标识
DOI:10.1021/acsnano.7b06371
摘要

Superhydrophobic carbon nanotube (CNT) films have demonstrated many fascinating performances in versatile applications, especially for those involving solid/liquid interfacial processes, because of their ability to affect the material/energy transfer at interfaces. Thus, developing superhydrophobic CNTs has attracted extensive research interests in the past decades, and it could be achieved either by surface coating of low-free energy materials or by constructing micro/nanohierarchical structures via various complicated processes. So far, developing a simple approach to fabricate stable superhydrophobic CNTs remains a challenge because the capillary force induced coalescence frequently happens when interacting with liquid. Herein, drawing inspirations from the lotus leaf, we proposed a simple one-step chemical vapor deposition approach with programmable controlled gas flow to directly fabricate a CNT film with rather stable superhydrophobicity, which can effectively prevent even small water droplets from permeating into the film. The robust superhydrophobicity was attributable to typical lotus-leaf-like micro/nanoscale hierarchical surface structures of the CNT film, where many microscale clusters composed of entangled nanotubes randomly protrude out of the under-layer aligned nanotubes. Consequently, dual-scale air pockets were trapped within each microscale CNT cluster and between, which could largely reduce the liquid/solid interface, leading to a Cassie state. Moreover, the superhydrophobicity of the CNT film showed excellent durability after long time exposure to air and even to corrosive liquids with a wide range of pH values. We envision that the approach developed is advantageous for versatile physicochemical interfacial processes, such as drag reduction, electrochemical catalysis, anti-icing, and biosensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
uouuo完成签到 ,获得积分10
3秒前
周周完成签到 ,获得积分10
6秒前
达雨完成签到 ,获得积分10
7秒前
花花2024完成签到 ,获得积分10
7秒前
陳.发布了新的文献求助20
10秒前
既白完成签到 ,获得积分10
10秒前
changjun完成签到,获得积分10
13秒前
是真的完成签到 ,获得积分10
15秒前
科研通AI5应助zhuli采纳,获得10
16秒前
hahaha完成签到,获得积分10
16秒前
ufofly730完成签到 ,获得积分10
17秒前
博慧完成签到 ,获得积分10
19秒前
11111111完成签到,获得积分10
19秒前
AlexLee完成签到,获得积分10
20秒前
漂漂亮亮大番薯完成签到,获得积分10
20秒前
端庄幻桃完成签到 ,获得积分10
22秒前
FCL完成签到,获得积分10
23秒前
cdercder完成签到,获得积分0
25秒前
无花果应助陳.采纳,获得10
26秒前
JOKER完成签到 ,获得积分10
26秒前
daxiong完成签到 ,获得积分10
29秒前
清秀的之桃完成签到 ,获得积分10
29秒前
满意的念柏完成签到,获得积分10
31秒前
cdercder应助科研通管家采纳,获得10
32秒前
李健应助科研通管家采纳,获得10
32秒前
cdercder应助科研通管家采纳,获得10
32秒前
fomo完成签到,获得积分10
32秒前
35秒前
阿尔法贝塔完成签到 ,获得积分10
35秒前
Sschi完成签到 ,获得积分10
36秒前
胖一达完成签到 ,获得积分10
36秒前
bellaluna完成签到 ,获得积分10
37秒前
怀风完成签到 ,获得积分10
39秒前
40秒前
zhuli发布了新的文献求助10
41秒前
xiaofeiyan完成签到 ,获得积分10
42秒前
江江完成签到 ,获得积分10
44秒前
五月完成签到 ,获得积分10
51秒前
陳.完成签到 ,获得积分10
51秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402465
捐赠科研通 3077245
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743