IFLBC: On the Edge Intelligence Using Federated Learning Blockchain Network

计算机科学 云计算 人工智能 边缘计算 块链 深度学习 GSM演进的增强数据速率 机器学习 边缘设备 分析 大数据 数据分析 预测分析 数据科学 计算机安全 数据挖掘 操作系统
作者
Ronald Doku,Danda B. Rawat
标识
DOI:10.1109/bigdatasecurity-hpsc-ids49724.2020.00047
摘要

Lately there has been an increase in the number of Machine Learning (ML) and Artificial Intelligence (AI) applications ranging from recommendation systems to face to speech recognition. At the helm of the advent of deep learning is the proliferation of data from diverse data sources ranging from Internet-of-Things (IoT) devices to self-driving automobiles. Tapping into this unlimited reservoir of information presents the problem of finding quality data out of a myriad of irrelevant ones, which to this day, has been a significant issue in data science with a direct ramification of this being the inability to generate quality ML models for useful predictive analysis. Edge computing has been deemed a solution to some of issues such as privacy, security, data silos and latency, as it ventures to bring cloud computing services closer to end-nodes. A new form of edge computing known as edge-AI attempts to bring ML, AI, and predictive analytics services closer to the data source (end devices). In this paper, we investigate an approach to bring edge-AI to end-nodes through a shared machine learning model powered by the blockchain technology and a federated learning framework called iFLBC edge. Our approach addresses the issue of the scarcity of relevant data by devising a mechanism known as the Proof of Common Interest (PoCI) to sieve out relevant data from irrelevant ones. The relevant data is trained on a model, which is then aggregated along with other models to generate a shared model that is stored on the blockchain. The aggregated model is downloaded by members of the network which they can utilize for the provision of edge intelligence to end-users. This way, AI can be more ubiquitous as members of the iFLBC network can provide intelligence services to end-users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助归零者碳索者采纳,获得10
10秒前
熬大夜完成签到 ,获得积分10
12秒前
缘分完成签到,获得积分10
13秒前
tingalan完成签到,获得积分10
18秒前
qianchimo完成签到 ,获得积分10
20秒前
dd完成签到 ,获得积分10
24秒前
SciGPT应助shin采纳,获得10
24秒前
JasVe完成签到 ,获得积分10
27秒前
minuxSCI完成签到,获得积分10
31秒前
光亮若翠发布了新的文献求助10
34秒前
wjswift完成签到,获得积分10
34秒前
齐朕完成签到,获得积分10
35秒前
HK完成签到 ,获得积分10
37秒前
星辰大海应助饼干采纳,获得10
45秒前
Singularity应助科研通管家采纳,获得10
48秒前
Singularity应助科研通管家采纳,获得10
48秒前
back you up应助科研通管家采纳,获得30
48秒前
isedu完成签到,获得积分10
48秒前
52秒前
墨月白发布了新的文献求助10
54秒前
56秒前
59秒前
光亮若翠完成签到,获得积分10
1分钟前
个性仙人掌完成签到 ,获得积分10
1分钟前
HCKACECE完成签到 ,获得积分0
1分钟前
行云流水完成签到,获得积分10
1分钟前
回首不再是少年完成签到,获得积分0
1分钟前
1分钟前
666完成签到 ,获得积分10
1分钟前
轻松元绿完成签到 ,获得积分10
1分钟前
现代大神发布了新的文献求助10
1分钟前
Michelle发布了新的文献求助10
1分钟前
1分钟前
ocean完成签到,获得积分10
1分钟前
小狗说好运来完成签到 ,获得积分10
1分钟前
shin发布了新的文献求助10
1分钟前
黑子完成签到 ,获得积分10
1分钟前
忧虑的静柏完成签到 ,获得积分10
1分钟前
归零者碳索者完成签到,获得积分20
1分钟前
丝丢皮得完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336787
关于积分的说明 10282126
捐赠科研通 3053566
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468