GA-based approach to optimize an equivalent electric circuit model of a Li-ion battery-pack

电池组 电池(电) MATLAB语言 电阻器 计算机科学 电压 等效电路 电容器 电动汽车 参数统计 荷电状态 拓扑(电路) 均方误差 电阻抗 电气工程 数学 工程类 物理 操作系统 统计 功率(物理) 量子力学
作者
Victor Pizarro-Carmona,Sandra Castaño-Solis,Marcelo Cortés-Carmona,Jesús Fraile-Ardanuy,David Jiménez
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:172: 114647-114647 被引量:25
标识
DOI:10.1016/j.eswa.2021.114647
摘要

This article presents the optimization procedure based on genetics algorithms (GA) to obtain an equivalent electric circuit model (EECM) of a Li-ion battery pack. In the first part, a series of experimental tests in time and frequency domains were carried out. These tests were used to identify the parameters of the EECM under different State-of-Charge (SoC) for a commercial battery-pack. Each EECM consists of a voltage source connected in series with a resistor and a set of k networks composed of a resistor in parallel with a capacitor, where k = 1, 2 o 3 (1RC, 2RC, and 3RC). Subsequently, parametric identification of the EECM was performed using optimization techniques. At this stage, the topology that gives the lowest estimation error was determined, where the options analyzed were to use 1RC, 2RC, or 3RC networks. The objective function consists of minimizing the mean square error between measured and calculated impedances of the different proposed circuit models. GA was used to solve this optimization problem. The minimum error obtained was 1.07% and 1.05% for the EECM with 2RC and 3RC networks, respectively. Finally, these EECMs were implemented in Matlab®/Simulink to validate the Li-ion battery-pack model response for an electric vehicle application. A hardware-in-the-loop (HIL) simulation platform was developed to simulate the performance of an electric vehicle (EV) under different driving cycles. The results show that the GA-based approach allows obtained an EECM of low order to represent the highly dynamic behavior of a Li-ion battery with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nuomici完成签到,获得积分10
1秒前
冷兮完成签到,获得积分10
1秒前
1秒前
yundong发布了新的文献求助10
2秒前
yilin完成签到 ,获得积分10
3秒前
00K发布了新的文献求助10
4秒前
Kk完成签到,获得积分10
5秒前
TszPok完成签到,获得积分10
5秒前
ikun完成签到,获得积分10
5秒前
tuzi123完成签到,获得积分10
6秒前
乌漆嘛黑完成签到,获得积分10
6秒前
6秒前
Xiehf完成签到,获得积分10
7秒前
领导范儿应助小文采纳,获得10
7秒前
崔志海完成签到,获得积分10
8秒前
mogugu完成签到,获得积分10
9秒前
9秒前
一头小眠羊完成签到,获得积分10
9秒前
mark完成签到,获得积分10
9秒前
10秒前
坦率的匪应助奇奇淼采纳,获得20
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
大鹏完成签到,获得积分10
11秒前
kol完成签到,获得积分10
11秒前
meta完成签到,获得积分10
11秒前
魏煜佳完成签到,获得积分10
12秒前
8hua完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
王怡珺完成签到,获得积分10
13秒前
秋风暖暖发布了新的文献求助30
13秒前
14秒前
FashionBoy应助奋斗哈基米采纳,获得10
14秒前
铜W发布了新的文献求助10
15秒前
nananana应助典雅的静采纳,获得10
15秒前
爆米花应助IRIS采纳,获得20
15秒前
16秒前
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4243645
求助须知:如何正确求助?哪些是违规求助? 3777117
关于积分的说明 11857973
捐赠科研通 3431443
什么是DOI,文献DOI怎么找? 1883121
邀请新用户注册赠送积分活动 935043
科研通“疑难数据库(出版商)”最低求助积分说明 841531