Utilisation of artificial intelligence for the development of an EUS-convolutional neural network model trained to enhance the diagnosis of autoimmune pancreatitis

卷积神经网络 内镜超声 自身免疫性胰腺炎 胰腺炎 医学 胰腺 放射科 计算机科学 人工智能 病理 内科学
作者
Neil B. Marya,Patrick Powers,Suresh T. Chari,Ferga C. Gleeson,Cadman L. Leggett,Barham K. Abu Dayyeh,Vinay Chandrasekhara,Prasad G. Iyer,Shounak Majumder,Randall K. Pearson,Bret T. Petersen,Elizabeth Rajan,Tarek Sawas,Andrew C. Storm,Santhi Swaroop Vege,Shigao Chen,Zaiyang Long,David M. Hough,Kristin C. Mara,Michael J. Levy
出处
期刊:Gut [BMJ]
卷期号:70 (7): 1335-1344 被引量:111
标识
DOI:10.1136/gutjnl-2020-322821
摘要

Objective The diagnosis of autoimmune pancreatitis (AIP) is challenging. Sonographic and cross-sectional imaging findings of AIP closely mimic pancreatic ductal adenocarcinoma (PDAC) and techniques for tissue sampling of AIP are suboptimal. These limitations often result in delayed or failed diagnosis, which negatively impact patient management and outcomes. This study aimed to create an endoscopic ultrasound (EUS)-based convolutional neural network (CNN) model trained to differentiate AIP from PDAC, chronic pancreatitis (CP) and normal pancreas (NP), with sufficient performance to analyse EUS video in real time. Design A database of still image and video data obtained from EUS examinations of cases of AIP, PDAC, CP and NP was used to develop a CNN. Occlusion heatmap analysis was used to identify sonographic features the CNN valued when differentiating AIP from PDAC. Results From 583 patients (146 AIP, 292 PDAC, 72 CP and 73 NP), a total of 1 174 461 unique EUS images were extracted. For video data, the CNN processed 955 EUS frames per second and was: 99% sensitive, 98% specific for distinguishing AIP from NP; 94% sensitive, 71% specific for distinguishing AIP from CP; 90% sensitive, 93% specific for distinguishing AIP from PDAC; and 90% sensitive, 85% specific for distinguishing AIP from all studied conditions (ie, PDAC, CP and NP). Conclusion The developed EUS-CNN model accurately differentiated AIP from PDAC and benign pancreatic conditions, thereby offering the capability of earlier and more accurate diagnosis. Use of this model offers the potential for more timely and appropriate patient care and improved outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪的白云完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
科研通AI5应助笑点低涵雁采纳,获得10
1秒前
2秒前
唯唯发布了新的文献求助10
2秒前
顾矜应助kejun采纳,获得30
2秒前
2秒前
LANGYE完成签到,获得积分20
2秒前
wenbo完成签到,获得积分10
4秒前
5秒前
5秒前
Jouleken完成签到,获得积分10
5秒前
要减肥的凡旋完成签到 ,获得积分10
5秒前
6秒前
6秒前
ANG完成签到 ,获得积分10
6秒前
汉堡包应助超级的抽屉采纳,获得10
6秒前
6秒前
清寒完成签到,获得积分10
7秒前
stupid完成签到,获得积分20
7秒前
桐桐应助LANGYE采纳,获得10
7秒前
zhang005on发布了新的文献求助10
7秒前
乐糖完成签到 ,获得积分10
8秒前
8秒前
852应助rgu采纳,获得10
8秒前
直率烤鸡完成签到,获得积分10
9秒前
爱嘤嘤嘤斯坦完成签到,获得积分10
9秒前
IOAU应助结实的慕凝采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
小马甲应助xiao采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
款款发布了新的文献求助10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816616
求助须知:如何正确求助?哪些是违规求助? 3359993
关于积分的说明 10406263
捐赠科研通 3078092
什么是DOI,文献DOI怎么找? 1690505
邀请新用户注册赠送积分活动 813815
科研通“疑难数据库(出版商)”最低求助积分说明 767871