已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep-DRM: a computational method for identifying disease-related metabolites based on graph deep learning approaches

深度学习 编码 计算机科学 计算生物学 代谢物 人工智能 疾病 代谢组学 图形 卷积神经网络 基因 生物信息学 生物 医学 遗传学 生物化学 理论计算机科学 病理
作者
Tianyi Zhao,Yang Hu,Liang Cheng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (4) 被引量:67
标识
DOI:10.1093/bib/bbaa212
摘要

The functional changes of the genes, RNAs and proteins will eventually be reflected in the metabolic level. Increasing number of researchers have researched mechanism, biomarkers and targeted drugs by metabolites. However, compared with our knowledge about genes, RNAs, and proteins, we still know few about diseases-related metabolites. All the few existed methods for identifying diseases-related metabolites ignore the chemical structure of metabolites, fail to recognize the association pattern between metabolites and diseases, and fail to apply to isolated diseases and metabolites.In this study, we present a graph deep learning based method, named Deep-DRM, for identifying diseases-related metabolites. First, chemical structures of metabolites were used to calculate similarities of metabolites. The similarities of diseases were obtained based on their functional gene network and semantic associations. Therefore, both metabolites and diseases network could be built. Next, Graph Convolutional Network (GCN) was applied to encode the features of metabolites and diseases, respectively. Then, the dimension of these features was reduced by Principal components analysis (PCA) with retainment 99% information. Finally, Deep neural network was built for identifying true metabolite-disease pairs (MDPs) based on these features. The 10-cross validations on three testing setups showed outstanding AUC (0.952) and AUPR (0.939) of Deep-DRM compared with previous methods and similar approaches. Ten of top 15 predicted associations between diseases and metabolites got support by other studies, which suggests that Deep-DRM is an efficient method to identify MDPs.liangcheng@hrbmu.edu.cn.https://github.com/zty2009/GPDNN-for-Identify-ing-Disease-related-Metabolites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫叶完成签到 ,获得积分10
刚刚
好运来发布了新的文献求助10
2秒前
wlnhyF发布了新的文献求助10
3秒前
蹇蹇完成签到 ,获得积分10
4秒前
天凉王破完成签到 ,获得积分10
7秒前
上官若男应助魔王小豆包采纳,获得10
7秒前
李健应助wlnhyF采纳,获得10
8秒前
别熬夜完成签到 ,获得积分10
10秒前
自信寻真发布了新的文献求助10
13秒前
赘婿应助好运来采纳,获得10
14秒前
周钰波完成签到,获得积分10
16秒前
鳗鱼悲举报不周山求助涉嫌违规
17秒前
18秒前
23秒前
wlnhyF发布了新的文献求助10
23秒前
不知名的小蜜蜂完成签到,获得积分10
25秒前
28秒前
Amon完成签到 ,获得积分10
29秒前
Cu完成签到 ,获得积分10
31秒前
33秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
33秒前
自信寻真完成签到,获得积分10
36秒前
碳水化合物完成签到,获得积分10
36秒前
wlnhyF发布了新的文献求助10
39秒前
环走鱼尾纹完成签到 ,获得积分10
44秒前
李健应助wlnhyF采纳,获得10
44秒前
烟花应助爱可依采纳,获得10
45秒前
Eddy完成签到,获得积分10
46秒前
wanghaha完成签到,获得积分10
46秒前
47秒前
49秒前
50秒前
Demi_Ming完成签到,获得积分10
50秒前
51秒前
52秒前
深情安青应助Shiku采纳,获得30
54秒前
大神水瓶座完成签到,获得积分10
54秒前
susuna111发布了新的文献求助10
54秒前
wlnhyF发布了新的文献求助10
56秒前
圆锥香蕉应助Echo采纳,获得20
57秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4526610
求助须知:如何正确求助?哪些是违规求助? 3966382
关于积分的说明 12292713
捐赠科研通 3631250
什么是DOI,文献DOI怎么找? 1998499
邀请新用户注册赠送积分活动 1034674
科研通“疑难数据库(出版商)”最低求助积分说明 924378