清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Computer Vision Platform to Automatically Locate Critical Events in Surgical Videos

剪辑 医学 工作流程 腹腔镜胆囊切除术 人工智能 胆囊管 计算机视觉 计算机科学 外科 数据库
作者
Pietro Mascagni,Deepak Alapatt,Takeshi Urade,Armine Vardazaryan,Didier Mutter,Jacques Marescaux,Guido Costamagna,Bernard Dallemagne,Nicolas Padoy
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
卷期号:274 (1): e93-e95 被引量:60
标识
DOI:10.1097/sla.0000000000004736
摘要

Objective: The aim of this study was to develop a computer vision platform to automatically locate critical events in surgical videos and provide short video clips documenting the critical view of safety (CVS) in laparoscopic cholecystectomy (LC). Background: Intraoperative events are typically documented through operator-dictated reports that do not always translate the operative reality. Surgical videos provide complete information on surgical procedures, but the burden associated with storing and manually analyzing full-length videos has so far limited their effective use. Methods: A computer vision platform named EndoDigest was developed and used to analyze LC videos. The mean absolute error (MAE) of the platform in automatically locating the manually annotated time of the cystic duct division in full-length videos was assessed. The relevance of the automatically extracted short video clips was evaluated by calculating the percentage of video clips in which the CVS was assessable by surgeons. Results: A total of 155 LC videos were analyzed: 55 of these videos were used to develop EndoDigest, whereas the remaining 100 were used to test it. The time of the cystic duct division was automatically located with a MAE of 62.8 ± 130.4 seconds (1.95% of full-length video duration). CVS was assessable in 91% of the 2.5 minutes long video clips automatically extracted from the considered test procedures. Conclusions: Deep learning models for workflow analysis can be used to reliably locate critical events in surgical videos and document CVS in LC. Further studies are needed to assess the clinical impact of surgical data science solutions for safer laparoscopic cholecystectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gincle完成签到 ,获得积分10
13秒前
16秒前
个性归尘给伶俜的求助进行了留言
16秒前
HXL完成签到 ,获得积分10
19秒前
LELE完成签到 ,获得积分10
22秒前
Alex-Song完成签到 ,获得积分0
22秒前
27秒前
花誓lydia完成签到 ,获得积分10
27秒前
28秒前
Jasmine发布了新的文献求助10
35秒前
济民财完成签到,获得积分10
36秒前
xkhxh完成签到 ,获得积分10
39秒前
45秒前
Ying完成签到,获得积分10
48秒前
52秒前
Adam完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
shenlee发布了新的文献求助10
1分钟前
平常的三问完成签到 ,获得积分10
1分钟前
GGBond完成签到 ,获得积分10
1分钟前
乐正怡完成签到 ,获得积分0
1分钟前
devilito完成签到,获得积分10
1分钟前
1分钟前
贰鸟应助科研通管家采纳,获得20
1分钟前
贰鸟应助科研通管家采纳,获得20
1分钟前
大个应助maolao采纳,获得10
1分钟前
科研临床两手抓完成签到 ,获得积分10
1分钟前
momo完成签到,获得积分10
2分钟前
tangchao完成签到,获得积分10
2分钟前
阿瑞完成签到 ,获得积分10
2分钟前
dong完成签到 ,获得积分10
2分钟前
mzhang2完成签到 ,获得积分10
2分钟前
乐悠悠完成签到 ,获得积分10
2分钟前
追梦完成签到,获得积分10
2分钟前
wangwang完成签到,获得积分10
2分钟前
2分钟前
ECHO完成签到,获得积分10
2分钟前
Wangyingjie5完成签到 ,获得积分10
2分钟前
scanker1981完成签到,获得积分10
3分钟前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Feminist Explorations of Urban China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372816
关于积分的说明 10475466
捐赠科研通 3092636
什么是DOI,文献DOI怎么找? 1702237
邀请新用户注册赠送积分活动 818839
科研通“疑难数据库(出版商)”最低求助积分说明 771101