Time-interval temporal patterns can beat and explain the malware

恶意软件 计算机科学 沙盒(软件开发) 隐病毒学 机器学习 恶意软件分析 杠杆(统计) 人工智能 计算机安全 数据挖掘 操作系统
作者
Ido Finder,Eitam Sheetrit,Nir Nissim
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:241: 108266-108266 被引量:15
标识
DOI:10.1016/j.knosys.2022.108266
摘要

Malware-based cyber-attacks are mainly aimed at obtaining sensitive data, intellectual property theft, denying critical services and data, and financial gain. Malware has continuously evolved, becoming more sophisticated and evasive, and thus it remains a major cyber-security threat. To keep pace with malware’s evolution, there is a critical need to develop new, advanced malware detection methods. Widely-used solutions, such as antivirus software and other static host-based intrusion detection systems, have limitations, particularly in detecting new, unknown, and evasive malware. Many of the limitations of static analysis can be overcome when dynamic malware analysis is leveraged by machine learning (ML) algorithms by executing the malware in an isolated environment (e.g., sandbox), which enables the acquisition of rich behavioral and time-oriented information associated with malware behavior. Prior studies have proposed various detection methods based on dynamically extracted API calls for malware detection, but other than simple order-based approaches, the use of more advanced time-based methods has not been explored. In this paper, we propose a more comprehensive detection framework which, by analyzing the raw multivariate time-series data associated with malware execution, can accurately capture malware behavior and provide clear explainability regarding malware behavior and detection model decisions. We are the first to mine and automatically discover meaningful and explainable time-interval temporal API call patterns associated with malware behavior and leverage them, using a variety of ML algorithms, for malware detection and categorization. To evaluate our proposed solution, we established a comprehensive dynamic-analysis environment using Cuckoo Sandbox and analyzed more than 17,000 portable executables executed in Windows 10, the most widely-used operating system today. We conducted extensive experiments on malware detection and categorization and compared the performance of our solution to state-of-the-art methods, including non-time-oriented (classic ML algorithms) and order-based methods (LSTM networks). The results show that our proposed solution outperforms the other methods, obtaining 99.6% detection accuracy for unknown malware and 97.65% categorization accuracy. In a more complex scenario of detecting an unknown malware type with unseen modus operandi, our method obtained almost 90% detection accuracy, outperforming the state-of-the-art methods. To demonstrate our ability to provide human explainability, we present some temporal patterns of different malware families that we discovered which shed light on malware behavior that can be used by cyber-security experts to better understand malware, better defend against future attacks, and even attribute malware campaigns to the cyber-attackers launching them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tgoutgou发布了新的文献求助10
1秒前
leoric完成签到,获得积分10
1秒前
2秒前
冰熊熊壹個完成签到,获得积分10
3秒前
w934420513发布了新的文献求助30
3秒前
6秒前
大个应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得30
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
lynn应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
冰魂应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
专注的千筹完成签到,获得积分10
13秒前
叫啥不吃饭完成签到,获得积分10
14秒前
lulu666完成签到 ,获得积分10
15秒前
快乐慕灵完成签到,获得积分10
18秒前
18秒前
22秒前
24秒前
27秒前
27秒前
小譆驳回了Orange应助
28秒前
大饼大饼发布了新的文献求助10
34秒前
dwfwq完成签到,获得积分10
34秒前
andy发布了新的文献求助10
34秒前
邢契完成签到,获得积分10
36秒前
36秒前
37秒前
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366