Quantifying the Impact of Electrically Conductive Membrane-Generated Hydrogen Peroxide and Extreme pH on the Viability of Escherichia coli Biofilms

生物膜 过氧化氢 大肠杆菌 化学 导电体 微生物学 材料科学 化学工程 细菌 生物 生物化学 复合材料 遗传学 基因 工程类
作者
Mohamad Amin Halali,Charles‐François de Lannoy
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:61 (1): 660-671 被引量:13
标识
DOI:10.1021/acs.iecr.1c02914
摘要

Electrically conductive membranes (ECMs) self-induce antifouling mechanisms at their surface under certain applied electrical currents. Quantifying these mechanisms is critical to enhancing ECMs' self-cleaning performance. Local pH change and H2O2 production are among the most important self-cleaning mechanisms previously hypothesized for ECMs. However, the impacts of these mechanisms have not previously been isolated and comprehensively studied. In this study, we quantified the individual impact of electrochemically induced acidic conditions, alkaline conditions, and H2O2 concentration on model bacteria, Escherichia coli. To this end, we first quantified the electrochemical potential of carbon nanotube-based ECMs to generate stressors, such as protons, hydroxyl ions, and H2O2, under a range of applied electrical currents (±0–150 mA, 0–2.7 V). Next, these chemical stressors with similar magnitude to that generated at the ECM surfaces were imposed on E. coli cells and biofilms. In the flow-through ECM systems, biofilm viability using LIVE/DEAD staining indicated biofilm viabilities of 39 ± 9.9%, 38 ± 4.7%, 45 ± 5.0%, 34 ± 3.1%, and 75 ± 4.9% after separate exposure to pH 3.5, anodic potential (2 V), pH 11, cathodic potential (2 V), and H2O2 concentration (188 μM). Electrical current-induced pH change at the membrane surface was shown to be more effective in reducing bacterial viability than H2O2 generation and more efficient than bulk pH changes. This study identified antibiofouling mechanisms of ECMs and provides guidance for determining the current patterns that maximize their antifouling effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Percy完成签到 ,获得积分10
3秒前
range发布了新的文献求助10
4秒前
豆子发布了新的文献求助10
5秒前
qiao应助小草采纳,获得10
6秒前
wyx完成签到 ,获得积分10
8秒前
通关完成签到 ,获得积分10
8秒前
huiluowork完成签到 ,获得积分10
9秒前
复杂白风发布了新的文献求助10
10秒前
11秒前
复杂白风完成签到,获得积分10
21秒前
852应助豆子采纳,获得10
21秒前
22秒前
22秒前
曲聋五完成签到 ,获得积分0
31秒前
36秒前
37秒前
从容荠完成签到,获得积分10
38秒前
39秒前
Akiii_完成签到,获得积分10
39秒前
Yue发布了新的文献求助10
41秒前
云影cns完成签到 ,获得积分10
42秒前
43秒前
孙廷宇完成签到,获得积分10
43秒前
小趴菜发布了新的文献求助10
44秒前
littlexu发布了新的文献求助10
47秒前
慕青应助仔wang采纳,获得10
47秒前
沉默的小耳朵完成签到 ,获得积分10
48秒前
48秒前
50秒前
QiDW发布了新的文献求助10
53秒前
53秒前
qiao应助littlexu采纳,获得10
54秒前
英姑应助littlexu采纳,获得30
54秒前
54秒前
香蕉觅云应助科研通管家采纳,获得10
55秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
搜集达人应助科研通管家采纳,获得10
55秒前
情怀应助科研通管家采纳,获得10
55秒前
高高冰蝶应助科研通管家采纳,获得10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781269
求助须知:如何正确求助?哪些是违规求助? 3326758
关于积分的说明 10228346
捐赠科研通 3041778
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799134
科研通“疑难数据库(出版商)”最低求助积分说明 758751