Crack-Across-Pore Enabled High-Performance Flexible Pressure Sensors for Deep Neural Network Enhanced Sensing and Human Action Recognition

材料科学 压力传感器 人工神经网络 动作(物理) 人工智能 纳米技术 计算机科学 机械工程 工程类 物理 量子力学
作者
Yuxin Hou,Lei Wang,Ran Sun,Yuanao Zhang,Mengxi Gu,Yuan‐Hao Zhu,Yubo Tong,Xunyu Liu,Zhixun Wang,Juan Xia,Yougen Hu,Lei Wei,Chunlei Yang,Ming Chen
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (5): 8358-8369 被引量:66
标识
DOI:10.1021/acsnano.2c02609
摘要

Flexible pressure sensors with high sensitivity over a broad pressure range are highly desired, yet challenging to build to meet the requirements of practical applications in daily activities and more significant in some extreme environments. This work demonstrates a thin, lightweight, and high-performance pressure sensor based on flexible porous phenyl-silicone/functionalized carbon nanotube (PS/FCNT) film. The formed crack-across-pore endows the pressure sensor with high sensitivity of 19.77 kPa–1 and 1.6 kPa–1 in the linear range of 0–33 kPa and 0.2–2 MPa, respectively, as well as ultralow detection limit (∼1.3 Pa). Furthermore, the resulting pressure sensor possesses a low fatigue over 4000 loading/unloading cycles even under a high pressure of 2 MPa and excellent durability (>6000 cycles) after heating at high temperature (200 °C), attributed to the strong chemical bonding between PS and FCNT, excellent mechanical stability, and high temperature resistance of PS/FCNT film. These superior properties set a foundation for applying the single sensor device in detecting diverse stimuli from the very low to high pressure range, including weak airflow, sway, vibrations, biophysical signal monitoring, and even car pressure. Besides, a deep neural network based on transformer (TRM) has been engaged for human action recognition with an overall classification rate of 94.96% on six human actions, offering high accuracy in real-time practical scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ldh032应助QR采纳,获得10
1秒前
所所应助QR采纳,获得10
1秒前
ldh032应助候默——辛普森采纳,获得10
1秒前
1秒前
归尘应助珊珊采纳,获得10
4秒前
Andy发布了新的文献求助10
5秒前
6秒前
6秒前
Doc_Ocean完成签到,获得积分10
6秒前
NexusExplorer应助细草微风岸采纳,获得10
8秒前
魏1122完成签到,获得积分10
8秒前
孤月笑清风完成签到,获得积分10
9秒前
QR发布了新的文献求助10
11秒前
静默发布了新的文献求助10
11秒前
11秒前
梦梦发布了新的文献求助10
12秒前
皮皮发布了新的文献求助10
13秒前
辛勤的大帅完成签到,获得积分10
14秒前
16秒前
香辣鸡腿堡完成签到,获得积分10
17秒前
隐形曼青应助Andy采纳,获得10
18秒前
Akim应助大成子采纳,获得10
20秒前
万能图书馆应助玉碎星采纳,获得10
20秒前
珊珊完成签到,获得积分20
20秒前
22秒前
共享精神应助失眠的板栗采纳,获得10
23秒前
跳跃的梦凡完成签到,获得积分10
25秒前
29秒前
YoLo完成签到 ,获得积分10
34秒前
玉碎星发布了新的文献求助10
35秒前
澄子完成签到 ,获得积分10
35秒前
大妙妙完成签到 ,获得积分10
35秒前
36秒前
星辰大海应助王佳豪采纳,获得10
38秒前
糯鱼鱼ovo完成签到 ,获得积分10
39秒前
39秒前
Kw完成签到,获得积分10
42秒前
t通应助科研通管家采纳,获得10
42秒前
科研通AI5应助科研通管家采纳,获得10
42秒前
高兴荔枝完成签到,获得积分10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778058
求助须知:如何正确求助?哪些是违规求助? 3323749
关于积分的说明 10215625
捐赠科研通 3038921
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798361
科研通“疑难数据库(出版商)”最低求助积分说明 758339