Muscle-Specific High-Density Electromyography Arrays for Hand Gesture Classification

肌电图 神经生理学 计算机科学 模式识别(心理学) 人工智能 运动(物理) 支持向量机 生物医学工程 计算机视觉 语音识别
作者
Jaime E Lara,Leo K Cheng,Oliver Rohrle,Niranchan Paskaranandavadivel
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (5): 1758-1766 被引量:1
标识
DOI:10.1109/tbme.2021.3131297
摘要

Dexterous hand motion is critical for object manipulation. Electrophysiological studies of the hand are key to understanding its underlying mechanisms. High-density electromyography (HD-EMG) provides spatio-temporal information about the underlying electrical activity of muscles, which can be used in neurophysiological research, rehabilitation and control applications. However, existing EMG electrodes platforms are not muscle-specific, which makes the assessment of intrinsic hand muscles difficult.Muscle-specific flexible HD-EMG electrode arrays were developed to capture intrinsic hand muscle myoelectric activity during manipulation tasks. The arrays consist of 60 individual electrodes targeting 10 intrinsic hand muscles. Myoelectric activity was displayed as spatio-temporal amplitude maps to visualize muscle activation. Time-domain and temporal-spatial HD-EMG features were extracted to train cubic support vector machine machine-learning classifiers to classify the intended user motion.Experimental data was collected from 5 subjects performing a range of 10 common hand motions. Spatio-temporal EMG maps showed distinct activation areas correlated to the muscles recruited during each movement. The thenar muscle fiber conduction velocity (CV) was estimated to be at 4.7±0.3 m/s for all subjects. Hand motions were successfully classified and average accuracy for all subjects was directly related to spatial resolution based on the number of channels used as inputs; ranging from 74±4% when using only 5 channels and up to 92±2% when using 41 channels. Temporal-spatial features were shown to provide increased motion-specific accuracy when similar muscles were recruited for different gestures.Muscle-specific electrodes were capable of accurately recording HD-EMG signals from intrinsic hand muscles and accurately predicting motion.The muscle-specific electrode arrays could improve electrophysiological research studies using EMG decomposition techniques to assess motor unit activity and in applications involving the analysis of dexterous hand motions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dennisysz发布了新的文献求助10
1秒前
8秒前
反杀闰土的猹完成签到,获得积分10
8秒前
我爱学习完成签到,获得积分10
11秒前
12秒前
13秒前
赘婿应助waa采纳,获得10
13秒前
98发布了新的文献求助10
17秒前
默默忆山发布了新的文献求助10
26秒前
浅浅完成签到 ,获得积分10
28秒前
香蕉觅云应助TTT采纳,获得10
31秒前
32秒前
35秒前
糕糕完成签到 ,获得积分0
35秒前
35秒前
waa发布了新的文献求助10
37秒前
星夜发布了新的文献求助10
38秒前
39秒前
诚心初晴完成签到,获得积分10
43秒前
ruochenzu完成签到,获得积分10
44秒前
44秒前
45秒前
杨杨完成签到 ,获得积分10
47秒前
xz完成签到,获得积分10
48秒前
49秒前
研友_VZG7GZ应助小周采纳,获得10
50秒前
51秒前
TTT发布了新的文献求助10
52秒前
maodianandme发布了新的文献求助10
52秒前
55秒前
57秒前
jerry完成签到 ,获得积分10
58秒前
ruochenzu发布了新的文献求助10
59秒前
1分钟前
1分钟前
东溟渔夫发布了新的文献求助10
1分钟前
1分钟前
dennisysz发布了新的文献求助10
1分钟前
科研通AI5应助LHL采纳,获得10
1分钟前
东溟渔夫完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211743
捐赠科研通 3038195
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133