The evolution, evolvability and engineering of gene regulatory DNA

可进化性 生物 调节顺序 计算生物学 遗传学 基因调控网络 自然选择 稳健性(进化) 基因 人类进化遗传学 基因表达调控 选择(遗传算法) 基因表达 计算机科学 系统发育学 人工智能
作者
Eeshit Dhaval Vaishnav,Carl G. de Boer,Jennifer Molinet,Moran Yassour,Fan Lin,Xian Adiconis,Dawn Thompson,Joshua Z. Levin,Francisco A. Cubillos,Aviv Regev
出处
期刊:Nature [Nature Portfolio]
卷期号:603 (7901): 455-463 被引量:193
标识
DOI:10.1038/s41586-022-04506-6
摘要

Mutations in non-coding regulatory DNA sequences can alter gene expression, organismal phenotype and fitness1–3. Constructing complete fitness landscapes, in which DNA sequences are mapped to fitness, is a long-standing goal in biology, but has remained elusive because it is challenging to generalize reliably to vast sequence spaces4–6. Here we build sequence-to-expression models that capture fitness landscapes and use them to decipher principles of regulatory evolution. Using millions of randomly sampled promoter DNA sequences and their measured expression levels in the yeast Saccharomyces cerevisiae, we learn deep neural network models that generalize with excellent prediction performance, and enable sequence design for expression engineering. Using our models, we study expression divergence under genetic drift and strong-selection weak-mutation regimes to find that regulatory evolution is rapid and subject to diminishing returns epistasis; that conflicting expression objectives in different environments constrain expression adaptation; and that stabilizing selection on gene expression leads to the moderation of regulatory complexity. We present an approach for using such models to detect signatures of selection on expression from natural variation in regulatory sequences and use it to discover an instance of convergent regulatory evolution. We assess mutational robustness, finding that regulatory mutation effect sizes follow a power law, characterize regulatory evolvability, visualize promoter fitness landscapes, discover evolvability archetypes and illustrate the mutational robustness of natural regulatory sequence populations. Our work provides a general framework for designing regulatory sequences and addressing fundamental questions in regulatory evolution. A framework for studying and engineering gene regulatory DNA sequences, based on deep neural sequence-to-expression models trained on large-scale libraries of random DNA, provides insight into the evolution, evolvability and fitness landscapes of regulatory DNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柴犬完成签到,获得积分10
2秒前
zz完成签到,获得积分20
2秒前
伍六柒发布了新的文献求助10
2秒前
顾矜应助跳跃的白梅采纳,获得10
5秒前
5秒前
IceyCNZ完成签到,获得积分10
5秒前
5秒前
7秒前
故意的松思完成签到,获得积分10
8秒前
过于喧嚣的孤独完成签到,获得积分10
9秒前
酷波er应助xiaozheng采纳,获得10
9秒前
10秒前
南木_完成签到,获得积分10
10秒前
li发布了新的文献求助30
10秒前
小饭团子完成签到 ,获得积分10
13秒前
orixero应助亿只金猪采纳,获得10
14秒前
15秒前
sgs完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
18秒前
DAYDAY完成签到 ,获得积分10
18秒前
19秒前
19秒前
20秒前
谢尔顿完成签到,获得积分10
20秒前
xiaozheng发布了新的文献求助10
21秒前
吕小布完成签到,获得积分10
21秒前
21秒前
45度人发布了新的文献求助10
21秒前
22秒前
Ke发布了新的文献求助10
22秒前
Winks完成签到,获得积分10
22秒前
雨天发布了新的文献求助10
23秒前
科研通AI5应助伍六柒采纳,获得10
23秒前
科研助手6应助LHT采纳,获得30
24秒前
24秒前
脑洞疼应助熊熊采纳,获得10
25秒前
123456完成签到 ,获得积分10
25秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346790
关于积分的说明 10330402
捐赠科研通 3063155
什么是DOI,文献DOI怎么找? 1681388
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728