已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The evolution, evolvability and engineering of gene regulatory DNA

可进化性 生物 调节顺序 计算生物学 遗传学 基因调控网络 自然选择 稳健性(进化) 基因 人类进化遗传学 基因表达调控 选择(遗传算法) 基因表达 计算机科学 系统发育学 人工智能
作者
Eeshit Dhaval Vaishnav,Carl G. de Boer,Jennifer Molinet,Moran Yassour,Fan Lin,Xian Adiconis,Dawn Thompson,Joshua Z. Levin,Francisco A. Cubillos,Aviv Regev
出处
期刊:Nature [Nature Portfolio]
卷期号:603 (7901): 455-463 被引量:223
标识
DOI:10.1038/s41586-022-04506-6
摘要

Mutations in non-coding regulatory DNA sequences can alter gene expression, organismal phenotype and fitness1–3. Constructing complete fitness landscapes, in which DNA sequences are mapped to fitness, is a long-standing goal in biology, but has remained elusive because it is challenging to generalize reliably to vast sequence spaces4–6. Here we build sequence-to-expression models that capture fitness landscapes and use them to decipher principles of regulatory evolution. Using millions of randomly sampled promoter DNA sequences and their measured expression levels in the yeast Saccharomyces cerevisiae, we learn deep neural network models that generalize with excellent prediction performance, and enable sequence design for expression engineering. Using our models, we study expression divergence under genetic drift and strong-selection weak-mutation regimes to find that regulatory evolution is rapid and subject to diminishing returns epistasis; that conflicting expression objectives in different environments constrain expression adaptation; and that stabilizing selection on gene expression leads to the moderation of regulatory complexity. We present an approach for using such models to detect signatures of selection on expression from natural variation in regulatory sequences and use it to discover an instance of convergent regulatory evolution. We assess mutational robustness, finding that regulatory mutation effect sizes follow a power law, characterize regulatory evolvability, visualize promoter fitness landscapes, discover evolvability archetypes and illustrate the mutational robustness of natural regulatory sequence populations. Our work provides a general framework for designing regulatory sequences and addressing fundamental questions in regulatory evolution. A framework for studying and engineering gene regulatory DNA sequences, based on deep neural sequence-to-expression models trained on large-scale libraries of random DNA, provides insight into the evolution, evolvability and fitness landscapes of regulatory DNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nkcyn完成签到,获得积分10
3秒前
3秒前
SCI的李完成签到 ,获得积分10
3秒前
4秒前
善学以致用应助冰山泥采纳,获得10
5秒前
可爱的函函应助JayChou采纳,获得10
5秒前
呆萌剑封完成签到,获得积分10
5秒前
6秒前
风清扬应助科研通管家采纳,获得150
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
6秒前
ccm应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得30
6秒前
6秒前
大个应助科研通管家采纳,获得10
7秒前
NexusExplorer应助corner采纳,获得10
7秒前
共享精神应助李小伟采纳,获得10
7秒前
zhihe完成签到,获得积分10
8秒前
8秒前
9秒前
思源应助杰瑞采纳,获得10
9秒前
彭于晏应助Harrison采纳,获得10
9秒前
zc发布了新的文献求助10
10秒前
LIN完成签到 ,获得积分10
10秒前
无端发布了新的文献求助10
11秒前
斯文明杰发布了新的文献求助10
11秒前
琪凯定理完成签到,获得积分10
11秒前
呆萌剑封发布了新的文献求助10
12秒前
ChenYX发布了新的文献求助40
13秒前
13秒前
震动的曲奇完成签到,获得积分10
14秒前
sisi发布了新的文献求助20
15秒前
zc完成签到,获得积分10
16秒前
冰山泥发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062774
求助须知:如何正确求助?哪些是违规求助? 4286522
关于积分的说明 13357250
捐赠科研通 4104286
什么是DOI,文献DOI怎么找? 2247425
邀请新用户注册赠送积分活动 1253032
关于科研通互助平台的介绍 1183969